test24 / main.py
Niansuh's picture
Update main.py
45fecec verified
raw
history blame
12.2 kB
import os
import re
import random
import string
import uuid
import json
import logging
import asyncio
import time
from collections import defaultdict
from typing import List, Dict, Any, Optional, Union, AsyncGenerator
from datetime import datetime
from aiohttp import ClientSession, ClientResponseError
from fastapi import FastAPI, HTTPException, Request, Depends, Header
from fastapi.responses import JSONResponse
from pydantic import BaseModel
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(name)s: %(message)s",
handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)
# Load environment variables
API_KEYS = os.getenv('API_KEYS', '').split(',') # Comma-separated API keys
RATE_LIMIT = int(os.getenv('RATE_LIMIT', '60')) # Requests per minute
if not API_KEYS or API_KEYS == ['']:
logger.error("No API keys found. Please set the API_KEYS environment variable.")
raise Exception("API_KEYS environment variable not set.")
# Simple in-memory rate limiter based solely on IP addresses
rate_limit_store = defaultdict(lambda: {"count": 0, "timestamp": time.time()})
# Define cleanup interval and window
CLEANUP_INTERVAL = 60 # seconds
RATE_LIMIT_WINDOW = 60 # seconds
async def rate_limiter_per_ip(request: Request):
"""
Rate limiter that enforces a limit based on the client's IP address.
"""
client_ip = request.client.host
current_time = time.time()
# Initialize or update the count and timestamp
if current_time - rate_limit_store[client_ip]["timestamp"] > RATE_LIMIT_WINDOW:
rate_limit_store[client_ip] = {"count": 1, "timestamp": current_time}
else:
if rate_limit_store[client_ip]["count"] >= RATE_LIMIT:
logger.warning(f"Rate limit exceeded for IP address: {client_ip}")
raise HTTPException(status_code=429, detail='Rate limit exceeded for IP address')
rate_limit_store[client_ip]["count"] += 1
class Blackbox:
label = "Blackbox AI"
url = "https://www.blackbox.ai"
api_endpoint = "https://www.blackbox.ai/api/chat"
working = True
supports_gpt_4 = True
supports_stream = True
supports_system_message = True
supports_message_history = True
default_model = 'blackboxai'
image_models = ['ImageGeneration']
models = [
default_model,
'blackboxai-pro',
*image_models,
"llama-3.1-8b",
'llama-3.1-70b',
'llama-3.1-405b',
'gpt-4o',
'gemini-pro',
'gemini-1.5-flash',
'claude-sonnet-3.5',
'PythonAgent',
'JavaAgent',
'JavaScriptAgent',
'HTMLAgent',
'GoogleCloudAgent',
'AndroidDeveloper',
'SwiftDeveloper',
'Next.jsAgent',
'MongoDBAgent',
'PyTorchAgent',
'ReactAgent',
'XcodeAgent',
'AngularJSAgent',
]
agentMode = {
'ImageGeneration': {'mode': True, 'id': "ImageGenerationLV45LJp", 'name': "Image Generation"},
}
trendingAgentMode = {
"blackboxai": {},
"gemini-1.5-flash": {'mode': True, 'id': 'Gemini'},
"llama-3.1-8b": {'mode': True, 'id': "llama-3.1-8b"},
'llama-3.1-70b': {'mode': True, 'id': "llama-3.1-70b"},
'llama-3.1-405b': {'mode': True, 'id': "llama-3.1-405b"},
'blackboxai-pro': {'mode': True, 'id': "BLACKBOXAI-PRO"},
'PythonAgent': {'mode': True, 'id': "Python Agent"},
'JavaAgent': {'mode': True, 'id': "Java Agent"},
'JavaScriptAgent': {'mode': True, 'id': "JavaScript Agent"},
'HTMLAgent': {'mode': True, 'id': "HTML Agent"},
'GoogleCloudAgent': {'mode': True, 'id': "Google Cloud Agent"},
'AndroidDeveloper': {'mode': True, 'id': "Android Developer"},
'SwiftDeveloper': {'mode': True, 'id': "Swift Developer"},
'Next.jsAgent': {'mode': True, 'id': "Next.js Agent"},
'MongoDBAgent': {'mode': True, 'id': "MongoDB Agent"},
'PyTorchAgent': {'mode': True, 'id': "PyTorch Agent"},
'ReactAgent': {'mode': True, 'id': "React Agent"},
'XcodeAgent': {'mode': True, 'id': "Xcode Agent"},
'AngularJSAgent': {'mode': True, 'id': "AngularJS Agent"},
}
userSelectedModel = {
"gpt-4o": "gpt-4o",
"gemini-pro": "gemini-pro",
'claude-sonnet-3.5': "claude-sonnet-3.5",
}
model_prefixes = {
'gpt-4o': '@GPT-4o',
'gemini-pro': '@Gemini-PRO',
'claude-sonnet-3.5': '@Claude-Sonnet-3.5',
'PythonAgent': '@Python Agent',
'JavaAgent': '@Java Agent',
'JavaScriptAgent': '@JavaScript Agent',
'HTMLAgent': '@HTML Agent',
'GoogleCloudAgent': '@Google Cloud Agent',
'AndroidDeveloper': '@Android Developer',
'SwiftDeveloper': '@Swift Developer',
'Next.jsAgent': '@Next.js Agent',
'MongoDBAgent': '@MongoDB Agent',
'PyTorchAgent': '@PyTorch Agent',
'ReactAgent': '@React Agent',
'XcodeAgent': '@Xcode Agent',
'AngularJSAgent': '@AngularJS Agent',
'blackboxai-pro': '@BLACKBOXAI-PRO',
'ImageGeneration': '@Image Generation',
}
model_referers = {
"blackboxai": "/?model=blackboxai",
"gpt-4o": "/?model=gpt-4o",
"gemini-pro": "/?model=gemini-pro",
"claude-sonnet-3.5": "/?model=claude-sonnet-3.5"
}
model_aliases = {
"gemini-flash": "gemini-1.5-flash",
"claude-3.5-sonnet": "claude-sonnet-3.5",
"flux": "ImageGeneration",
}
@classmethod
def get_model(cls, model: str) -> str:
if model in cls.models:
return model
elif model in cls.model_aliases:
return cls.model_aliases[model]
else:
return cls.default_model
@staticmethod
def generate_random_string(length: int = 7) -> str:
characters = string.ascii_letters + string.digits
return ''.join(random.choices(characters, k=length))
@staticmethod
def generate_next_action() -> str:
return uuid.uuid4().hex
@staticmethod
def generate_next_router_state_tree() -> str:
router_state = [
"",
{
"children": [
"(chat)",
{
"children": [
"__PAGE__",
{}
]
}
]
},
None,
None,
True
]
return json.dumps(router_state)
@staticmethod
def clean_response(text: str) -> str:
pattern = r'^\$\@\$v=undefined-rv1\$\@\$'
cleaned_text = re.sub(pattern, '', text)
return cleaned_text
@classmethod
async def generate_response(
cls,
model: str,
messages: List[Dict[str, str]],
proxy: Optional[str] = None,
websearch: bool = False,
**kwargs
) -> Dict[str, Any]:
"""
Generates a response from Blackbox AI for the /v1/chat/completions endpoint.
Parameters:
model (str): Model to use for generating responses.
messages (List[Dict[str, str]]): Message history.
proxy (Optional[str]): Proxy URL, if needed.
websearch (bool): Enables or disables web search mode.
**kwargs: Additional keyword arguments.
Returns:
Dict[str, Any]: The response dictionary in the format required by /v1/chat/completions.
"""
model = cls.get_model(model)
chat_id = cls.generate_random_string()
next_action = cls.generate_next_action()
next_router_state_tree = cls.generate_next_router_state_tree()
agent_mode = cls.agentMode.get(model, {})
trending_agent_mode = cls.trendingAgentMode.get(model, {})
prefix = cls.model_prefixes.get(model, "")
formatted_prompt = ""
for message in messages:
role = message.get('role', '').capitalize()
content = message.get('content', '')
if role and content:
formatted_prompt += f"{role}: {content}\n"
if prefix:
formatted_prompt = f"{prefix} {formatted_prompt}".strip()
referer_path = cls.model_referers.get(model, f"/?model={model}")
referer_url = f"{cls.url}{referer_path}"
common_headers = {
'accept': '*/*',
'accept-language': 'en-US,en;q=0.9',
'cache-control': 'no-cache',
'origin': cls.url,
'pragma': 'no-cache',
'priority': 'u=1, i',
'sec-ch-ua': '"Chromium";v="129", "Not=A?Brand";v="8"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"Linux"',
'sec-fetch-dest': 'empty',
'sec-fetch-mode': 'cors',
'sec-fetch-site': 'same-origin',
'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) '
'AppleWebKit/537.36 (KHTML, like Gecko) '
'Chrome/129.0.0.0 Safari/537.36'
}
headers_api_chat = {
'Content-Type': 'application/json',
'Referer': referer_url
}
headers_api_chat_combined = {**common_headers, **headers_api_chat}
payload_api_chat = {
"messages": [
{
"id": chat_id,
"content": formatted_prompt,
"role": "user"
}
],
"id": chat_id,
"previewToken": None,
"userId": None,
"codeModelMode": True,
"agentMode": agent_mode,
"trendingAgentMode": trending_agent_mode,
"isMicMode": False,
"userSystemPrompt": None,
"maxTokens": 1024,
"playgroundTopP": 0.9,
"playgroundTemperature": 0.5,
"isChromeExt": False,
"githubToken": None,
"clickedAnswer2": False,
"clickedAnswer3": False,
"clickedForceWebSearch": False,
"visitFromDelta": False,
"mobileClient": False,
"webSearchMode": websearch,
"userSelectedModel": cls.userSelectedModel.get(model, model)
}
async with ClientSession(headers=common_headers) as session:
try:
async with session.post(
cls.api_endpoint,
headers=headers_api_chat_combined,
json=payload_api_chat,
proxy=proxy
) as response_api_chat:
response_api_chat.raise_for_status()
text = await response_api_chat.text()
cleaned_response = cls.clean_response(text)
response_data = {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion",
"created": int(datetime.now().timestamp()),
"model": model,
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": cleaned_response
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": sum(len(msg['content'].split()) for msg in messages),
"completion_tokens": len(cleaned_response.split()),
"total_tokens": sum(len(msg['content'].split()) for msg in messages) + len(cleaned_response.split())
}
}
return response_data
except ClientResponseError as e:
error_text = f"Error {e.status}: {e.message}"
try:
error_response = await e.response.text()