Spaces:
Runtime error
Runtime error
# import numpy as np | |
# import pandas as pd | |
# from sklearn.model_selection import train_test_split | |
# from sklearn.neural_network import MLPRegressor | |
# from sklearn.preprocessing import StandardScaler | |
# # Step 1: Create random food data | |
# def create_random_food_data(num_samples=100): | |
# np.random.seed(42) | |
# areas = ['American', 'Mexican', 'Italian', 'Indian', 'Chinese'] | |
# categories = ['Beef', 'Chicken', 'Vegetarian', 'Seafood', 'Pork'] | |
# vegetarian_categories = ['Vegetarian'] | |
# data = [] | |
# for _ in range(num_samples): | |
# area = np.random.choice(areas) | |
# category = np.random.choice(categories) | |
# ingredients_count = np.random.randint(3, 10) | |
# calories = np.random.randint(200, 600) | |
# protein = np.random.randint(10, 40) | |
# carbs = np.random.randint(20, 70) | |
# fats = np.random.randint(5, 30) | |
# data.append([area, category, ingredients_count, calories, protein, carbs, fats]) | |
# df = pd.DataFrame(data, columns=['Area', 'Category', 'IngredientsCount', 'Calories', 'Protein', 'Carbs', 'Fats']) | |
# return df | |
# # Step 2: Preprocess the Data | |
# def preprocess_data(df): | |
# features = df[['Area', 'Category', 'IngredientsCount']] | |
# targets = df[['Calories', 'Protein', 'Carbs', 'Fats']] | |
# # Encode categorical variables | |
# features = pd.get_dummies(features, columns=['Area', 'Category']) | |
# return features, targets | |
# # Step 3: Train the MLP Model | |
# def train_mlp_model(X, y): | |
# # Split data into training and test sets | |
# X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) | |
# # Standardize the features | |
# scaler = StandardScaler() | |
# X_train_scaled = scaler.fit_transform(X_train) | |
# X_test_scaled = scaler.transform(X_test) | |
# # Initialize and train the MLP model | |
# mlp_model = MLPRegressor(hidden_layer_sizes=(100, 50), max_iter=500, random_state=42) | |
# mlp_model.fit(X_train_scaled, y_train) | |
# return mlp_model, scaler | |
# # Step 4: Generate Diet Plan | |
# def generate_diet_plan(mlp_model, scaler, total_calories, num_meals, region, diet_preference, foods_df): | |
# meal_names = ['Breakfast', 'Morning Snack', 'Lunch', 'Afternoon Snack', 'Dinner'] | |
# calorie_distribution = [0.25, 0.10, 0.35, 0.10, 0.20] | |
# # Adjust the distribution if number of meals is less than 5 | |
# if num_meals < 5: | |
# calorie_distribution = calorie_distribution[:num_meals] | |
# calorie_distribution = [x / sum(calorie_distribution) for x in calorie_distribution] | |
# elif num_meals > 5: | |
# # Evenly distribute the remaining calories across the extra meals | |
# extra_meals = num_meals - 5 | |
# extra_meal_calories = (sum(calorie_distribution) - 1) / extra_meals | |
# calorie_distribution.extend([extra_meal_calories] * extra_meals) | |
# calorie_distribution = [x / sum(calorie_distribution) for x in calorie_distribution] | |
# meal_names.extend([f'Extra Meal {i+1}' for i in range(extra_meals)]) | |
# diet_plan = [] | |
# # Filter foods based on the user's region and diet preference | |
# if diet_preference == 'Vegetarian': | |
# region_foods = foods_df[(foods_df['Area'] == region) & (foods_df['Category'] == 'Vegetarian')] | |
# else: | |
# region_foods = foods_df[foods_df['Area'] == region] | |
# for i in range(num_meals): | |
# # Randomly select a food from the filtered region and preference | |
# food = region_foods.sample(1).iloc[0] | |
# # Adjust the portion to meet the meal calorie requirement | |
# portion_factor = (total_calories * calorie_distribution[i]) / food['Calories'] | |
# diet_plan.append({ | |
# 'Meal': meal_names[i % len(meal_names)], | |
# 'Food': food['Category'], | |
# 'Area': food['Area'], | |
# 'IngredientsCount': food['IngredientsCount'], | |
# 'Calories': food['Calories'] * portion_factor, | |
# 'Protein': food['Protein'] * portion_factor, | |
# 'Carbs': food['Carbs'] * portion_factor, | |
# 'Fats': food['Fats'] * portion_factor | |
# }) | |
# return diet_plan | |
# # Main Function | |
# if __name__ == "__main__": | |
# # Create random food data | |
# foods_df = create_random_food_data() | |
# # Preprocess the data | |
# X, y = preprocess_data(foods_df) | |
# # Train the MLP model | |
# mlp_model, scaler = train_mlp_model(X, y) | |
# # Get user input | |
# total_calories = float(input("Enter the total daily calories you want to consume: ")) | |
# num_meals = int(input("Enter the number of meals per day: ")) | |
# region = input("Enter your region (American, Mexican, Italian, Indian, Chinese): ") | |
# diet_preference = input("Enter your diet preference (Vegetarian, Non-Vegetarian): ") | |
# # Generate and print the diet plan | |
# diet_plan = generate_diet_plan(mlp_model, scaler, total_calories, num_meals, region, diet_preference, foods_df) | |
# for meal in diet_plan: | |
# print(f"{meal['Meal']}: {meal['Food']} ({meal['Area']}) - {meal['Calories']:.2f} kcal, " | |
# f"{meal['Protein']:.2f}g protein, {meal['Carbs']:.2f}g carbs, {meal['Fats']:.2f}g fats") | |
import requests | |
import numpy as np | |
import pandas as pd | |
from sklearn.model_selection import train_test_split | |
from sklearn.neural_network import MLPRegressor | |
from sklearn.preprocessing import StandardScaler | |
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error | |
# Step 1: Fetch Food Data from TheMealDB API | |
def fetch_mealdb_data(): | |
meals = [] | |
for letter in 'abcdefghijklmnopqrstuvwxyz': | |
url = f'https://www.themealdb.com/api/json/v1/1/search.php?f={letter}' | |
response = requests.get(url) | |
data = response.json() | |
if data['meals']: | |
meals.extend(data['meals']) | |
return meals | |
# Step 2: Preprocess the Data | |
# def preprocess_data(meals): | |
# features = [] | |
# targets = [] | |
# for meal in meals: | |
# area = meal['strArea'] if meal['strArea'] else 'Unknown' | |
# category = meal['strCategory'] if meal['strCategory'] else 'Unknown' | |
# meal_type = np.random.choice(['Breakfast', 'Lunch', 'Dinner', 'Snack']) | |
# ingredients_count = sum([1 for i in range(1, 21) if meal[f'strIngredient{i}']]) | |
# # Example target values (you can replace these with real data) | |
# calories = np.random.randint(200, 600) | |
# protein = np.random.randint(10, 40) | |
# carbs = np.random.randint(20, 70) | |
# fats = np.random.randint(5, 30) | |
# features.append([area, category, meal_type, ingredients_count]) | |
# targets.append([calories, protein, carbs, fats]) | |
# feature_df = pd.DataFrame(features, columns=['Area', 'Category', 'MealType', 'IngredientsCount']) | |
# target_df = pd.DataFrame(targets, columns=['Calories', 'Protein', 'Carbs', 'Fats']) | |
# # Encode categorical variables | |
# feature_df = pd.get_dummies(feature_df, columns=['Area', 'Category', 'MealType']) | |
# return feature_df, target_df | |
def preprocess_data(meals): | |
features = [] | |
targets = [] | |
for meal in meals: | |
area = meal['strArea'] if meal['strArea'] else 'Unknown' | |
category = meal['strCategory'] if meal['strCategory'] else 'Unknown' | |
meal_type = np.random.choice(['Breakfast', 'Lunch', 'Dinner', 'Snack']) | |
ingredients_count = sum([1 for i in range(1, 21) if meal[f'strIngredient{i}']]) | |
meal_name = meal['strMeal'] if meal['strMeal'] else 'Unknown' # Add meal name | |
# Example target values (replace with real data if available) | |
calories = np.random.randint(200, 600) | |
protein = np.random.randint(10, 40) | |
carbs = np.random.randint(20, 70) | |
fats = np.random.randint(5, 30) | |
# Include meal_name in features | |
features.append([meal_name, area, category, meal_type, ingredients_count]) | |
targets.append([calories, protein, carbs, fats]) | |
feature_df = pd.DataFrame(features, columns=['MealName', 'Area', 'Category', 'MealType', 'IngredientsCount']) | |
target_df = pd.DataFrame(targets, columns=['Calories', 'Protein', 'Carbs', 'Fats']) | |
# Encode categorical variables except MealName | |
feature_df = pd.get_dummies(feature_df, columns=['Area', 'Category', 'MealType']) | |
return feature_df, target_df | |
# Step 3: Train the MLP Model | |
def train_mlp_model(X, y): | |
numeric_X = X.select_dtypes(include=[np.number]) | |
X_train, X_test, y_train, y_test = train_test_split(numeric_X, y, test_size=0.2, random_state=42) | |
scaler = StandardScaler() | |
X_train_scaled = scaler.fit_transform(X_train) | |
X_test_scaled = scaler.transform(X_test) | |
mlp_model = MLPRegressor(hidden_layer_sizes=(150, 100, 50), activation='relu', solver='adam', max_iter=1000, random_state=42) | |
mlp_model.fit(X_train_scaled, y_train) | |
y_pred = mlp_model.predict(X_test_scaled) | |
mse = mean_squared_error(y_test, y_pred) | |
r2 = r2_score(y_test, y_pred) | |
mae = mean_absolute_error(y_test, y_pred) | |
print(f"Model Performance:") | |
print(f"Mean Squared Error (MSE): {mse:.2f}") | |
print(f"R-squared (R²): {r2:.2f}") | |
print(f"Mean Absolute Error (MAE): {mae:.2f}") | |
return mlp_model, scaler | |
# Step 4: Generate Diet Plan | |
def generate_diet_plan(mlp_model, scaler, total_calories, num_meals, region, diet_preference, foods_df): | |
meal_names = ['Breakfast', 'Morning Snack', 'Lunch', 'Afternoon Snack', 'Dinner'] | |
calorie_distribution = [0.25, 0.10, 0.35, 0.10, 0.20] | |
if num_meals < 5: | |
calorie_distribution = calorie_distribution[:num_meals] | |
calorie_distribution = [x / sum(calorie_distribution) for x in calorie_distribution] | |
elif num_meals > 5: | |
extra_meals = num_meals - 5 | |
extra_meal_calories = (sum(calorie_distribution) - 1) / extra_meals | |
calorie_distribution.extend([extra_meal_calories] * extra_meals) | |
calorie_distribution = [x / sum(calorie_distribution) for x in calorie_distribution] | |
meal_names.extend([f'Extra Meal {i+1}' for i in range(extra_meals)]) | |
diet_plan = [] | |
if diet_preference == 'Vegetarian': | |
region_foods = foods_df[(foods_df['Area'] == region) & (foods_df['Category'] == 'Vegetarian')] | |
else: | |
region_foods = foods_df[foods_df['Area'] == region] | |
for i in range(num_meals): | |
meal_type = meal_names[i % len(meal_names)] | |
meal_foods = region_foods[region_foods['MealType'] == meal_type] | |
if meal_foods.empty: | |
continue | |
food = meal_foods.sample(1).iloc[0] | |
portion_factor = (total_calories * calorie_distribution[i]) / food['Calories'] | |
diet_plan.append({ | |
'Meal': meal_type, | |
'Food': food['Category'], | |
'Area': food['Area'], | |
'IngredientsCount': food['IngredientsCount'], | |
'Calories': food['Calories'] * portion_factor, | |
'Protein': food['Protein'] * portion_factor, | |
'Carbs': food['Carbs'] * portion_factor, | |
'Fats': food['Fats'] * portion_factor | |
}) | |
return diet_plan | |
# Main Function | |
if __name__ == "__main__": | |
meals = fetch_mealdb_data() | |
X, y = preprocess_data(meals) | |
mlp_model, scaler = train_mlp_model(X, y) | |
total_calories = float(input("Enter the total daily calories you want to consume: ")) | |
num_meals = int(input("Enter the number of meals per day: ")) | |
region = input("Enter your region (American, Mexican, Italian, Indian, Chinese): ") | |
diet_preference = input("Enter your diet preference (Vegetarian, Non-Vegetarian): ") | |
diet_plan = generate_diet_plan(mlp_model, scaler, total_calories, num_meals, region, diet_preference, X) | |
for meal in diet_plan: | |
print(f"{meal['Meal']}: {meal['Food']} ({meal['Area']}) - {meal['Calories']:.2f} kcal, " | |
f"{meal['Protein']:.2f}g protein, {meal['Carbs']:.2f}g carbs, {meal['Fats']:.2f}g fats") | |