File size: 2,708 Bytes
0fc716a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "from llama_index.llms.azure_openai import AzureOpenAI\n",
    "from llama_index.embeddings.azure_openai import AzureOpenAIEmbedding\n",
    "from llama_index.core import SimpleDirectoryReader, Settings, VectorStoreIndex"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [],
   "source": [
    "api_key = os.getenv(\"AZURE_OPENAI_API_KEY\")\n",
    "api_version = \"2024-05-01-preview\"\n",
    "azure_endpoint = os.getenv(\"AZURE_OPENAI_ENDPOINT\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [],
   "source": [
    "llm = AzureOpenAI(\n",
    "    model=\"gpt-4o\",\n",
    "    deployment_name=\"gpt-4o\",\n",
    "    api_key=api_key,\n",
    "    azure_endpoint=azure_endpoint,\n",
    "    api_version=api_version,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [],
   "source": [
    "# You need to deploy your own embedding model as well as your own chat completion model\n",
    "embed_model = AzureOpenAIEmbedding(\n",
    "    model=\"text-embedding-3-small\",\n",
    "    deployment_name=\"text-embedding-3-small\",\n",
    "    api_key=api_key,\n",
    "    azure_endpoint=azure_endpoint,\n",
    "    api_version=api_version,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [],
   "source": [
    "Settings.llm = llm\n",
    "Settings.embed_model = embed_model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Data Source -> Documents化を行うStep\n",
    "documents = SimpleDirectoryReader(\n",
    "    input_dir=\"./data/text\"\n",
    ").load_data()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "index = VectorStoreIndex.from_documents(documents)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "index.storage_context.persist(persist_dir=\"../index\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}