Spaces:
Runtime error
Runtime error
File size: 1,360 Bytes
447b47e 4d48b95 447b47e 9b1be63 447b47e 9b1be63 4d48b95 447b47e 9b1be63 4d48b95 9b1be63 4d48b95 447b47e 9b1be63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import gradio as gr
import torch
from PIL import Image
import json
# Model
model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt', source="local")
def yolo(im, size=1024):
g = (size / max(im.size)) # gain
im = im.resize((int(x * g) for x in im.size), resample=Image.Resampling.LANCZOS) # resize
results = model(im) # inference
results.render()
df = results.pandas().xyxy[0].to_json(orient="records")
res = json.loads(df)
return [
Image.fromarray(results.imgs[0]),
res
]
inputs = gr.Image(type='pil', label="Original Image")
outputs = [
gr.Image(type="pil", label="Output Image"),
gr.JSON(label="Output JSON")
]
title = "YOLOv5 NDL-DocL Datasets"
description = "YOLOv5 NDL-DocL Datasets Gradio demo for object detection. Upload an image or click an example image to use."
article = "<p style='text-align: center'>YOLOv5 NDL-DocL Datasets is an object detection model trained on the <a href=\"https://github.com/ndl-lab/layout-dataset\">NDL-DocL Datasets</a>.</p>"
examples = [['『源氏物語』(東京大学総合図書館所蔵).jpg'], ['『源氏物語』(京都大学所蔵).jpg'], ['『平家物語』(国文学研究資料館提供).jpg']]
demo = gr.Interface(yolo, inputs, outputs, title=title, description=description, article=article,examples=examples)
demo.launch()
|