nakamura196's picture
feat: update v8
2417fbd
raw
history blame
1.98 kB
import gradio as gr
import json
from ultralyticsplus import YOLO, render_result
# Model Heading and Description
model_heading = "YOLOv8 NDL-DocL Datasets"
description = """YOLOv8 NDL-DocL Datasets Gradio demo for object detection. Upload an image or click an example image to use."""
article = "<p style='text-align: center'>YOLOv5 NDL-DocL Datasets is an object detection model trained on the <a href=\"https://github.com/ndl-lab/layout-dataset\">NDL-DocL Datasets</a>.</p>"
image_path= [
['『源氏物語』(東京大学総合図書館所蔵).jpg', 0.25, 0.45],
['『源氏物語』(京都大学所蔵).jpg', 0.25, 0.45],
['『平家物語』(国文学研究資料館提供).jpg', 0.25, 0.45]
]
# Load YOLO model
model = YOLO('model_- 19 may 2024 15_13.pt')
def yolov8_img_inference(
image: gr.Image = None,
conf_threshold: gr.Slider = 0.25,
iou_threshold: gr.Slider = 0.45,
):
"""
YOLOv8 inference function
Args:
image: Input image
conf_threshold: Confidence threshold
iou_threshold: IOU threshold
Returns:
Rendered image
"""
results = model.predict(image, conf=conf_threshold, iou=iou_threshold)
render = render_result(model=model, image=image, result=results[0])
json_data = json.loads(results[0].tojson())
return render, json_data
inputs_image = [
gr.Image(type="filepath", label="Input Image"),
gr.Slider(minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold"),
gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"),
]
outputs_image =[
gr.Image(type="filepath", label="Output Image"),
gr.JSON(label="Output JSON")
]
demo = gr.Interface(
fn=yolov8_img_inference,
inputs=inputs_image,
outputs=outputs_image,
title=model_heading,
description=description,
examples=image_path,
article=article,
cache_examples=False
)
demo.launch(share=False)