File size: 8,724 Bytes
6e19f63
46e69b0
cb42996
 
 
 
46e69b0
07aeb52
cb42996
 
 
 
 
1f2f75f
 
 
cb42996
 
 
 
 
 
 
 
 
 
 
 
b867a1d
 
 
 
 
 
 
 
1f2f75f
 
b867a1d
 
cb42996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b867a1d
 
 
 
f9b48f4
 
b867a1d
f9b48f4
 
b867a1d
f9b48f4
 
b867a1d
 
 
 
f9b48f4
b867a1d
f9b48f4
b867a1d
 
cb42996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9b48f4
cb42996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1c280b
cb42996
 
 
46e69b0
cb42996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1c280b
46e69b0
b54eb41
cb42996
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import gradio as gr
import os
import io
from contextlib import redirect_stdout, redirect_stderr

# Set fixed MPLCONFIGDIR to avoid permission issues
os.environ['MPLCONFIGDIR'] = '/tmp'

# Sample code for different Gradio apps
EXAMPLE_CODES = {
    "hello_world": """
import gradio as gr

def greet(name):
    return f"Hello, {name}!"

demo = gr.Interface(
    fn=greet,
    inputs=gr.Textbox(label="Your Name"),
    outputs=gr.Textbox(label="Greeting"),
    title="Hello World",
    description="A simple greeting app"
)
""",
    
    "calculator": """
import gradio as gr

def calculate(num1, num2, operation):
    if operation == "Add":
        return num1 + num2
    elif operation == "Subtract":
        return num1 - num2
    elif operation == "Multiply":
        return num1 * num2
    elif operation == "Divide":
        if num2 == 0:
            return "Error: Division by zero"
        return num1 / num2

demo = gr.Interface(
    fn=calculate,
    inputs=[
        gr.Number(label="First Number"),
        gr.Number(label="Second Number"),
        gr.Radio(["Add", "Subtract", "Multiply", "Divide"], label="Operation")
    ],
    outputs=gr.Textbox(label="Result"),
    title="Calculator",
    description="Perform basic arithmetic operations"
)
""",
    
    "image_filter": """
import gradio as gr
import numpy as np
from PIL import Image

def apply_filter(image, filter_type):
    if image is None:
        return None
        
    img_array = np.array(image)
    
    if filter_type == "Grayscale":
        result = np.mean(img_array, axis=2).astype(np.uint8)
        return Image.fromarray(result)
    elif filter_type == "Invert":
        result = 255 - img_array
        return Image.fromarray(result)
    elif filter_type == "Sepia":
        sepia = np.array([[0.393, 0.769, 0.189],
                         [0.349, 0.686, 0.168],
                         [0.272, 0.534, 0.131]])
        sepia_img = img_array.dot(sepia.T)
        sepia_img[sepia_img > 255] = 255
        return Image.fromarray(sepia_img.astype(np.uint8))
    return image

demo = gr.Interface(
    fn=apply_filter,
    inputs=[
        gr.Image(type="pil"),
        gr.Radio(["Grayscale", "Invert", "Sepia"], label="Filter")
    ],
    outputs=gr.Image(type="pil"),
    title="Image Filter",
    description="Apply various filters to images"
)
"""
}

# Function to simulate LLM API call
def simulate_llm_response(prompt):
    """Simulate an LLM response based on the prompt"""
    prompt_lower = prompt.lower()
    
    if "hello" in prompt_lower or "greet" in prompt_lower:
        return EXAMPLE_CODES["hello_world"], None
    elif "calculat" in prompt_lower or "math" in prompt_lower or "arithmetic" in prompt_lower:
        return EXAMPLE_CODES["calculator"], None
    elif "image" in prompt_lower or "filter" in prompt_lower or "photo" in prompt_lower:
        return EXAMPLE_CODES["image_filter"], None
    else:
        # Default to hello world
        return EXAMPLE_CODES["hello_world"], None

# Function to execute code and extract the demo object
def execute_code(code):
    """Execute the code and return the demo object"""
    # Create a clean namespace
    namespace = {}
    
    # Capture stdout and stderr
    stdout_buffer = io.StringIO()
    stderr_buffer = io.StringIO()
    
    try:
        with redirect_stdout(stdout_buffer), redirect_stderr(stderr_buffer):
            # Execute the code in the namespace
            exec(code, namespace)
        
        # Check if 'demo' exists in the namespace
        if 'demo' not in namespace:
            return None, "No 'demo' object found in the code", stdout_buffer.getvalue(), stderr_buffer.getvalue()
        
        # Return the demo object
        return namespace['demo'], None, stdout_buffer.getvalue(), stderr_buffer.getvalue()
    
    except Exception as e:
        import traceback
        return None, f"Error executing code: {str(e)}\n{traceback.format_exc()}", stdout_buffer.getvalue(), stderr_buffer.getvalue()

# Main app
with gr.Blocks(title="LLM Gradio App Generator") as app:
    # Header
    gr.Markdown("# 🤖 LLM Gradio App Generator")
    gr.Markdown("Generate and run Gradio apps dynamically!")
    
    with gr.Row():
        # Input column
        with gr.Column(scale=1):
            # App description input
            prompt = gr.Textbox(
                label="Describe the app you want",
                placeholder="e.g., A calculator app that can perform basic arithmetic",
                lines=3
            )
            
            # Example buttons
            gr.Markdown("### Example Prompts")
            hello_btn = gr.Button("Hello World App")
            calc_btn = gr.Button("Calculator App")
            img_btn = gr.Button("Image Filter App")
            
            # Generate button
            generate_btn = gr.Button("Generate & Run App", variant="primary")
            
            # Code display
            gr.Markdown("### Generated Code")
            code_display = gr.Code(language="python")
            
            # Log output
            with gr.Accordion("Execution Log", open=False):
                log_output = gr.Textbox(label="Output Log", lines=5)
        
        # Output column
        with gr.Column(scale=2):
            # Status message
            status_msg = gr.Markdown("### Generated App Will Appear Here")
            
            # Container for the dynamically generated app
            app_container = gr.HTML(
                """<div style="display:flex; justify-content:center; align-items:center; height:400px; border:1px dashed #ccc; border-radius:8px;">
                    <div style="text-align:center;">
                        <h3>No App Generated Yet</h3>
                        <p>Enter a description and click "Generate & Run App"</p>
                    </div>
                </div>"""
            )
    
    # Example button functions
    def set_prompt(text):
        return text
    
    hello_btn.click(
        lambda: set_prompt("A simple hello world app that greets the user by name"),
        inputs=None,
        outputs=prompt
    )
    
    calc_btn.click(
        lambda: set_prompt("A calculator app that can add, subtract, multiply and divide two numbers"),
        inputs=None,
        outputs=prompt
    )
    
    img_btn.click(
        lambda: set_prompt("An image filter app that can apply grayscale, invert, and sepia filters to images"),
        inputs=None,
        outputs=prompt
    )
    
    # Main function to generate and run the app
    def generate_and_run_app(prompt_text):
        if not prompt_text:
            return (
                "Please enter a description of the app you want to generate.",
                "",
                """<div style="text-align:center; padding:20px;">
                    <h3>No App Generated</h3>
                    <p>Please enter a description first.</p>
                </div>"""
            )
        
        # Get code from LLM (simulated)
        code, error = simulate_llm_response(prompt_text)
        if error:
            return (
                code,
                f"Error generating code: {error}",
                """<div style="text-align:center; color:red; padding:20px;">
                    <h3>Error</h3>
                    <p>{0}</p>
                </div>""".format(error)
            )
        
        # Execute the code
        demo_obj, exec_error, stdout, stderr = execute_code(code)
        log_output = f"STDOUT:\n{stdout}\n\nSTDERR:\n{stderr}"
        
        if exec_error:
            return (
                code,
                f"Error: {exec_error}",
                """<div style="text-align:center; color:red; padding:20px;">
                    <h3>Execution Error</h3>
                    <p>{0}</p>
                </div>""".format(exec_error)
            )
        
        try:
            # Render the demo to HTML
            rendered_html = demo_obj.render().replace('window.gradio_mode = "app";', '')
            
            return code, f"✅ App generated and running!", rendered_html
        except Exception as e:
            import traceback
            return (
                code,
                f"Error rendering app: {str(e)}",
                """<div style="text-align:center; color:red; padding:20px;">
                    <h3>Rendering Error</h3>
                    <p>{0}</p>
                </div>""".format(traceback.format_exc())
            )
    
    # Connect the generate button
    generate_btn.click(
        generate_and_run_app,
        inputs=prompt,
        outputs=[code_display, log_output, app_container]
    )

# Launch the app
if __name__ == "__main__":
    app.launch(server_name="0.0.0.0", server_port=7860)