Spaces:
Sleeping
Sleeping
import gradio as gr | |
import requests | |
import re | |
import tempfile | |
import importlib.util | |
import sys | |
import os | |
import ast | |
def call_openai_api(api_key, prompt): | |
"""Direct API call to OpenAI""" | |
headers = { | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {api_key}" | |
} | |
# Determine Gradio version to ensure compatibility | |
gradio_version = gr.__version__ | |
major_version = int(gradio_version.split('.')[0]) | |
system_prompt = f"""You are an expert Gradio developer. | |
Create a standalone Gradio application based on the user's prompt. | |
Your response should ONLY include Python code without any explanation. | |
IMPORTANT: You must use Gradio version {gradio_version} (Gradio {major_version}.x) syntax. | |
For Gradio 3.x: Use the `.click()` method on buttons and elements to connect them to functions. | |
For Gradio 4.x: Use the event subscription pattern instead of .click(). | |
The code must: | |
1. Import all necessary libraries | |
2. Define a complete, functional Gradio interface | |
3. DO NOT include a launch command or if __name__ == "__main__" block | |
4. The interface should be assigned to a variable named 'demo' | |
5. Handle errors gracefully | |
6. Be completely self-contained in a single script | |
Example for Gradio 3.x: | |
```python | |
import gradio as gr | |
def greet(name): | |
return f"Hello, {name}!" | |
with gr.Blocks() as demo: | |
name_input = gr.Textbox(label="Your Name") | |
greet_btn = gr.Button("Greet") | |
output = gr.Textbox(label="Output") | |
greet_btn.click(fn=greet, inputs=name_input, outputs=output) | |
``` | |
""" | |
data = { | |
"model": "gpt-4o", | |
"messages": [ | |
{"role": "system", "content": system_prompt}, | |
{"role": "user", "content": prompt} | |
], | |
"temperature": 0.2, | |
"max_tokens": 4000 | |
} | |
response = requests.post( | |
"https://api.openai.com/v1/chat/completions", | |
headers=headers, | |
json=data | |
) | |
if response.status_code != 200: | |
return None, f"API Error: {response.status_code} - {response.text}" | |
result = response.json() | |
return result["choices"][0]["message"]["content"], None | |
def extract_code_blocks(text): | |
"""Extract code blocks from markdown""" | |
pattern = r'```(?:python)?\s*([\s\S]*?)```' | |
matches = re.findall(pattern, text) | |
if not matches and text.strip(): | |
if re.search(r'import\s+\w+|def\s+\w+\(|class\s+\w+:|if\s+__name__\s*==\s*[\'"]__main__[\'"]:', text): | |
return [text.strip()] | |
return [match.strip() for match in matches] | |
def validate_gradio_code(code): | |
"""Basic validation of the generated code""" | |
try: | |
tree = ast.parse(code) | |
allowed_modules = ['gradio', 'numpy', 'pandas', 'matplotlib', 'PIL', 'os', 'io', 'base64', | |
'time', 'datetime', 'json', 'random', 'math', 'sys', 're', 'pathlib', | |
'collections', 'typing', 'warnings'] | |
for node in ast.walk(tree): | |
if isinstance(node, ast.Import): | |
for name in node.names: | |
if name.name not in allowed_modules: | |
return False, f"Unauthorized import: {name.name}" | |
elif isinstance(node, ast.ImportFrom): | |
if node.module not in allowed_modules and node.module is not None: | |
return False, f"Unauthorized import from: {node.module}" | |
return True, None | |
except SyntaxError as e: | |
return False, f"Syntax error in the code: {str(e)}" | |
except Exception as e: | |
return False, f"Error validating code: {str(e)}" | |
def load_generated_app(code): | |
"""Load and run the generated Gradio app""" | |
# Save code to temp file | |
with tempfile.NamedTemporaryFile(suffix='.py', delete=False) as f: | |
f.write(code.encode('utf-8')) | |
temp_file = f.name | |
try: | |
# Import module | |
module_name = os.path.basename(temp_file).replace('.py', '') | |
spec = importlib.util.spec_from_file_location(module_name, temp_file) | |
module = importlib.util.module_from_spec(spec) | |
sys.modules[module_name] = module | |
spec.loader.exec_module(module) | |
# Get the Gradio interface | |
if hasattr(module, 'demo'): | |
return module.demo, None | |
else: | |
return None, "No 'demo' variable found in the generated code" | |
except Exception as e: | |
return None, f"Error: {str(e)}" | |
finally: | |
try: | |
os.unlink(temp_file) | |
except: | |
pass | |
def generate_app(api_key, prompt): | |
"""Main function to generate and load a Gradio app""" | |
# Validate API key format | |
if not api_key or len(api_key) < 20 or not api_key.startswith("sk-"): | |
return None, "Please provide a valid OpenAI API key" | |
# Call OpenAI API | |
response, error = call_openai_api(api_key, prompt) | |
if error: | |
return None, error | |
# Extract code blocks | |
code_blocks = extract_code_blocks(response) | |
if not code_blocks: | |
return None, "No valid code found in the response" | |
code = code_blocks[0] | |
# Validate code | |
is_valid, error_msg = validate_gradio_code(code) | |
if not is_valid: | |
return code, error_msg | |
# Load the app | |
app, app_error = load_generated_app(code) | |
if app_error: | |
return code, app_error | |
return code, app | |
# Example Gradio apps for common requests | |
EXAMPLE_APPS = { | |
"calculator": """ | |
import gradio as gr | |
import numpy as np | |
def calculate(num1, num2, operation): | |
if operation == "Add": | |
return num1 + num2 | |
elif operation == "Subtract": | |
return num1 - num2 | |
elif operation == "Multiply": | |
return num1 * num2 | |
elif operation == "Divide": | |
if num2 == 0: | |
return "Error: Division by zero" | |
return num1 / num2 | |
else: | |
return "Please select an operation" | |
with gr.Blocks() as demo: | |
gr.Markdown("# Simple Calculator") | |
with gr.Row(): | |
num1_input = gr.Number(label="First Number") | |
num2_input = gr.Number(label="Second Number") | |
op_dropdown = gr.Dropdown( | |
["Add", "Subtract", "Multiply", "Divide"], | |
label="Operation" | |
) | |
calculate_btn = gr.Button("Calculate") | |
result = gr.Number(label="Result") | |
calculate_btn.click( | |
fn=calculate, | |
inputs=[num1_input, num2_input, op_dropdown], | |
outputs=result | |
) | |
""", | |
"image_filter": """ | |
import gradio as gr | |
import numpy as np | |
from PIL import Image, ImageEnhance, ImageFilter | |
def apply_filter(image, filter_type, intensity): | |
if image is None: | |
return None | |
img = Image.fromarray(image) | |
if filter_type == "Blur": | |
filtered = img.filter(ImageFilter.GaussianBlur(radius=intensity)) | |
elif filter_type == "Sharpen": | |
enhancer = ImageEnhance.Sharpness(img) | |
filtered = enhancer.enhance(1 + intensity) | |
elif filter_type == "Brightness": | |
enhancer = ImageEnhance.Brightness(img) | |
filtered = enhancer.enhance(1 + intensity) | |
elif filter_type == "Contrast": | |
enhancer = ImageEnhance.Contrast(img) | |
filtered = enhancer.enhance(1 + intensity) | |
else: | |
filtered = img | |
return np.array(filtered) | |
with gr.Blocks() as demo: | |
gr.Markdown("# Image Filter App") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(label="Original Image") | |
filter_type = gr.Dropdown( | |
["Blur", "Sharpen", "Brightness", "Contrast"], | |
label="Filter Type", | |
value="Blur" | |
) | |
intensity = gr.Slider(0, 2, 0.5, label="Intensity") | |
apply_btn = gr.Button("Apply Filter") | |
with gr.Column(): | |
output_image = gr.Image(label="Filtered Image") | |
apply_btn.click( | |
fn=apply_filter, | |
inputs=[input_image, filter_type, intensity], | |
outputs=output_image | |
) | |
""" | |
} | |
# Create the main UI | |
with gr.Blocks(title="AI Gradio App Generator") as demo: | |
gr.Markdown("# 🤖 AI Gradio App Generator") | |
gr.Markdown("Describe the Gradio app you want, and I'll generate it using OpenAI's API.") | |
with gr.Row(): | |
with gr.Column(): | |
api_key = gr.Textbox( | |
label="OpenAI API Key", | |
placeholder="sk-...", | |
type="password", | |
info="Your key is used only for this session" | |
) | |
prompt = gr.Textbox( | |
label="App Description", | |
placeholder="Describe the Gradio app you want to create...", | |
lines=5 | |
) | |
submit_btn = gr.Button("Generate App", variant="primary") | |
with gr.Accordion("Generated Code", open=False): | |
code_output = gr.Code(language="python", label="Generated Code") | |
status_output = gr.Markdown("") | |
generated_app_container = gr.Group(visible=False) | |
def on_submit(api_key_input, prompt_text): | |
try: | |
# If it's a simple request for a common app, use our built-in example | |
lower_prompt = prompt_text.lower() | |
for key, example_code in EXAMPLE_APPS.items(): | |
if key in lower_prompt: | |
try: | |
app, app_error = load_generated_app(example_code) | |
if app_error: | |
return example_code, f"⚠️ {app_error}", gr.update(visible=False) | |
return example_code, "✅ App generated successfully (from template)!", gr.update(visible=True, value=app) | |
except Exception as e: | |
pass # Fall back to API generation if template fails | |
# Generate custom app via API | |
code, result = generate_app(api_key_input, prompt_text) | |
if code is None: | |
return None, f"⚠️ {result}", gr.update(visible=False) | |
if isinstance(result, str): # Error message | |
return code, f"⚠️ {result}", gr.update(visible=False) | |
# Success - result is the app | |
return code, "✅ App generated successfully!", gr.update(visible=True, value=result) | |
except Exception as e: | |
return None, f"⚠️ Error: {str(e)}", gr.update(visible=False) | |
submit_btn.click( | |
on_submit, | |
inputs=[api_key, prompt], | |
outputs=[code_output, status_output, generated_app_container] | |
) | |
if __name__ == "__main__": | |
demo.launch(server_name="0.0.0.0", server_port=7860) |