nakas's picture
Update app.py
b867a1d verified
raw
history blame
10 kB
import streamlit as st
import gradio as gr
import subprocess
import tempfile
import os
import time
import signal
import requests
import re
import json
import sys
from pathlib import Path
import atexit
# Print version info
st.set_page_config(
page_title="Gradio App Generator",
page_icon="🤖",
layout="wide"
)
# Directory to store temporary apps
TEMP_DIR = Path(tempfile.gettempdir()) / "gradio_apps"
os.makedirs(TEMP_DIR, exist_ok=True)
# Track running processes
if 'process' not in st.session_state:
st.session_state.process = None
st.session_state.app_port = None
st.session_state.app_path = None
# Clean up on exit
def cleanup():
if st.session_state.process and st.session_state.process.poll() is None:
st.session_state.process.terminate()
try:
st.session_state.process.wait(timeout=5)
except subprocess.TimeoutExpired:
st.session_state.process.kill()
# Clean up temp files
if st.session_state.app_path and os.path.exists(st.session_state.app_path):
try:
os.unlink(st.session_state.app_path)
except:
pass
atexit.register(cleanup)
def stop_running_app():
"""Stop the currently running Gradio app"""
if st.session_state.process and st.session_state.process.poll() is None:
st.session_state.process.terminate()
try:
st.session_state.process.wait(timeout=5)
except subprocess.TimeoutExpired:
st.session_state.process.kill()
st.session_state.process = None
st.session_state.app_port = None
if st.session_state.app_path and os.path.exists(st.session_state.app_path):
try:
os.unlink(st.session_state.app_path)
except:
pass
st.session_state.app_path = None
return True
return False
def get_openai_code(api_key, description):
"""Get code from OpenAI API"""
prompt = f"""Create a simple Gradio app that {description}.
IMPORTANT: The app should:
1. Use gr.Interface (not Blocks)
2. Have flagging_callback=None to avoid permission issues
3. Include demo.launch(server_name="0.0.0.0", server_port=PORT) at the end
4. Be self-contained with only standard libraries
Provide ONLY Python code with no explanation."""
try:
response = requests.post(
"https://api.openai.com/v1/chat/completions",
headers={
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
},
json={
"model": "gpt-4o",
"messages": [
{"role": "system", "content": "You are a Gradio expert. Provide only Python code without explanations."},
{"role": "user", "content": prompt}
],
"temperature": 0.2
},
timeout=30
)
if response.status_code != 200:
return None, f"API Error: {response.status_code}"
content = response.json()["choices"][0]["message"]["content"]
# Extract code blocks if present
code_pattern = r'```python\s*([\s\S]*?)```'
code_matches = re.findall(code_pattern, content)
if code_matches:
return code_matches[0], None
# If no code blocks found, use the whole content
return content, None
except Exception as e:
return None, f"Error: {str(e)}"
def run_gradio_app(code, port=8050):
"""Run a Gradio app with the given code"""
# Stop any existing app
stop_running_app()
# Replace PORT in the code with the actual port
code = code.replace("PORT", str(port))
# Make sure flagging is disabled
if "gr.Interface" in code and "flagging_callback=None" not in code:
code = code.replace("gr.Interface(", "gr.Interface(flagging_callback=None, ")
# Create a temporary file
fd, path = tempfile.mkstemp(suffix='.py', dir=TEMP_DIR)
with os.fdopen(fd, 'w') as f:
f.write(code)
st.session_state.app_path = path
# Run the app as a subprocess
try:
process = subprocess.Popen([sys.executable, path], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
st.session_state.process = process
st.session_state.app_port = port
# Wait a bit for the app to start
time.sleep(3)
# Check if process is still running
if process.poll() is not None:
stdout, stderr = process.communicate()
return False, f"Failed to start app: {stderr.decode('utf-8')}"
return True, None
except Exception as e:
return False, f"Error starting app: {str(e)}"
# Predefined Gradio app templates
TEMPLATES = {
"hello_world": """
import gradio as gr
def greet(name):
return f"Hello, {name}!"
demo = gr.Interface(
fn=greet,
inputs=gr.Textbox(label="Name"),
outputs=gr.Textbox(label="Greeting"),
title="Hello World App",
flagging_callback=None
)
demo.launch(server_name="0.0.0.0", server_port=PORT)
""",
"calculator": """
import gradio as gr
def calculate(num1, num2, operation):
if operation == "Add":
return num1 + num2
elif operation == "Subtract":
return num1 - num2
elif operation == "Multiply":
return num1 * num2
elif operation == "Divide":
if num2 == 0:
return "Error: Division by zero"
return num1 / num2
demo = gr.Interface(
fn=calculate,
inputs=[
gr.Number(label="First Number"),
gr.Number(label="Second Number"),
gr.Radio(["Add", "Subtract", "Multiply", "Divide"], label="Operation")
],
outputs=gr.Textbox(label="Result"),
title="Simple Calculator",
flagging_callback=None
)
demo.launch(server_name="0.0.0.0", server_port=PORT)
""",
"image_filter": """
import gradio as gr
import numpy as np
def apply_filter(image, filter_type):
if image is None:
return None
if filter_type == "Grayscale":
return np.mean(image, axis=2).astype(np.uint8)
elif filter_type == "Invert":
return 255 - image
elif filter_type == "Sepia":
sepia = np.array([[0.393, 0.769, 0.189],
[0.349, 0.686, 0.168],
[0.272, 0.534, 0.131]])
sepia_img = image.dot(sepia.T)
sepia_img[sepia_img > 255] = 255
return sepia_img.astype(np.uint8)
return image
demo = gr.Interface(
fn=apply_filter,
inputs=[
gr.Image(type="numpy"),
gr.Radio(["Grayscale", "Invert", "Sepia"], label="Filter")
],
outputs=gr.Image(type="numpy"),
title="Image Filter App",
flagging_callback=None
)
demo.launch(server_name="0.0.0.0", server_port=PORT)
""",
"text_analysis": """
import gradio as gr
def analyze_text(text):
if not text:
return "Please enter some text"
char_count = len(text)
word_count = len(text.split())
line_count = len(text.splitlines())
return f"Characters: {char_count}\\nWords: {word_count}\\nLines: {line_count}"
demo = gr.Interface(
fn=analyze_text,
inputs=gr.Textbox(label="Enter Text", lines=5),
outputs=gr.Textbox(label="Analysis"),
title="Text Analysis Tool",
flagging_callback=None
)
demo.launch(server_name="0.0.0.0", server_port=PORT)
"""
}
# Streamlit UI
st.title("🤖 Gradio App Generator")
tab1, tab2 = st.tabs(["Built-in Templates", "Custom Generator"])
# Built-in templates tab
with tab1:
st.header("Generate from Templates")
template_choice = st.selectbox(
"Select a template",
["hello_world", "calculator", "image_filter", "text_analysis"],
format_func=lambda x: {
"hello_world": "Hello World",
"calculator": "Simple Calculator",
"image_filter": "Image Filter",
"text_analysis": "Text Analysis"
}[x]
)
if st.button("Generate from Template"):
code = TEMPLATES[template_choice]
success, error = run_gradio_app(code)
if success:
st.success("App started successfully!")
else:
st.error(f"Failed to start app: {error}")
st.code(code, language="python")
# Custom generator tab
with tab2:
st.header("Generate Custom App")
api_key = st.text_input("OpenAI API Key", type="password", help="Your OpenAI API key")
app_description = st.text_area("Describe the app you want", height=100)
if st.button("Generate Custom App"):
if not api_key or len(api_key) < 20:
st.error("Please enter a valid OpenAI API key")
elif not app_description:
st.error("Please enter a description for your app")
else:
with st.spinner("Generating app..."):
code, error = get_openai_code(api_key, app_description)
if error:
st.error(f"Error generating code: {error}")
else:
success, run_error = run_gradio_app(code)
if success:
st.success("App started successfully!")
else:
st.error(f"Failed to start app: {run_error}")
st.code(code, language="python")
# Display the currently running app
st.header("Running App")
if st.session_state.app_port:
# Create an iframe to display the app
st.components.v1.iframe(
src=f"http://localhost:{st.session_state.app_port}",
height=600,
scrolling=True
)
if st.button("Stop App"):
if stop_running_app():
st.success("App stopped successfully")
st.experimental_rerun()
else:
st.info("No app is currently running. Generate an app first.")