nakas's picture
Update app.py
cb42996 verified
raw
history blame
8.72 kB
import gradio as gr
import os
import io
from contextlib import redirect_stdout, redirect_stderr
# Set fixed MPLCONFIGDIR to avoid permission issues
os.environ['MPLCONFIGDIR'] = '/tmp'
# Sample code for different Gradio apps
EXAMPLE_CODES = {
"hello_world": """
import gradio as gr
def greet(name):
return f"Hello, {name}!"
demo = gr.Interface(
fn=greet,
inputs=gr.Textbox(label="Your Name"),
outputs=gr.Textbox(label="Greeting"),
title="Hello World",
description="A simple greeting app"
)
""",
"calculator": """
import gradio as gr
def calculate(num1, num2, operation):
if operation == "Add":
return num1 + num2
elif operation == "Subtract":
return num1 - num2
elif operation == "Multiply":
return num1 * num2
elif operation == "Divide":
if num2 == 0:
return "Error: Division by zero"
return num1 / num2
demo = gr.Interface(
fn=calculate,
inputs=[
gr.Number(label="First Number"),
gr.Number(label="Second Number"),
gr.Radio(["Add", "Subtract", "Multiply", "Divide"], label="Operation")
],
outputs=gr.Textbox(label="Result"),
title="Calculator",
description="Perform basic arithmetic operations"
)
""",
"image_filter": """
import gradio as gr
import numpy as np
from PIL import Image
def apply_filter(image, filter_type):
if image is None:
return None
img_array = np.array(image)
if filter_type == "Grayscale":
result = np.mean(img_array, axis=2).astype(np.uint8)
return Image.fromarray(result)
elif filter_type == "Invert":
result = 255 - img_array
return Image.fromarray(result)
elif filter_type == "Sepia":
sepia = np.array([[0.393, 0.769, 0.189],
[0.349, 0.686, 0.168],
[0.272, 0.534, 0.131]])
sepia_img = img_array.dot(sepia.T)
sepia_img[sepia_img > 255] = 255
return Image.fromarray(sepia_img.astype(np.uint8))
return image
demo = gr.Interface(
fn=apply_filter,
inputs=[
gr.Image(type="pil"),
gr.Radio(["Grayscale", "Invert", "Sepia"], label="Filter")
],
outputs=gr.Image(type="pil"),
title="Image Filter",
description="Apply various filters to images"
)
"""
}
# Function to simulate LLM API call
def simulate_llm_response(prompt):
"""Simulate an LLM response based on the prompt"""
prompt_lower = prompt.lower()
if "hello" in prompt_lower or "greet" in prompt_lower:
return EXAMPLE_CODES["hello_world"], None
elif "calculat" in prompt_lower or "math" in prompt_lower or "arithmetic" in prompt_lower:
return EXAMPLE_CODES["calculator"], None
elif "image" in prompt_lower or "filter" in prompt_lower or "photo" in prompt_lower:
return EXAMPLE_CODES["image_filter"], None
else:
# Default to hello world
return EXAMPLE_CODES["hello_world"], None
# Function to execute code and extract the demo object
def execute_code(code):
"""Execute the code and return the demo object"""
# Create a clean namespace
namespace = {}
# Capture stdout and stderr
stdout_buffer = io.StringIO()
stderr_buffer = io.StringIO()
try:
with redirect_stdout(stdout_buffer), redirect_stderr(stderr_buffer):
# Execute the code in the namespace
exec(code, namespace)
# Check if 'demo' exists in the namespace
if 'demo' not in namespace:
return None, "No 'demo' object found in the code", stdout_buffer.getvalue(), stderr_buffer.getvalue()
# Return the demo object
return namespace['demo'], None, stdout_buffer.getvalue(), stderr_buffer.getvalue()
except Exception as e:
import traceback
return None, f"Error executing code: {str(e)}\n{traceback.format_exc()}", stdout_buffer.getvalue(), stderr_buffer.getvalue()
# Main app
with gr.Blocks(title="LLM Gradio App Generator") as app:
# Header
gr.Markdown("# 🤖 LLM Gradio App Generator")
gr.Markdown("Generate and run Gradio apps dynamically!")
with gr.Row():
# Input column
with gr.Column(scale=1):
# App description input
prompt = gr.Textbox(
label="Describe the app you want",
placeholder="e.g., A calculator app that can perform basic arithmetic",
lines=3
)
# Example buttons
gr.Markdown("### Example Prompts")
hello_btn = gr.Button("Hello World App")
calc_btn = gr.Button("Calculator App")
img_btn = gr.Button("Image Filter App")
# Generate button
generate_btn = gr.Button("Generate & Run App", variant="primary")
# Code display
gr.Markdown("### Generated Code")
code_display = gr.Code(language="python")
# Log output
with gr.Accordion("Execution Log", open=False):
log_output = gr.Textbox(label="Output Log", lines=5)
# Output column
with gr.Column(scale=2):
# Status message
status_msg = gr.Markdown("### Generated App Will Appear Here")
# Container for the dynamically generated app
app_container = gr.HTML(
"""<div style="display:flex; justify-content:center; align-items:center; height:400px; border:1px dashed #ccc; border-radius:8px;">
<div style="text-align:center;">
<h3>No App Generated Yet</h3>
<p>Enter a description and click "Generate & Run App"</p>
</div>
</div>"""
)
# Example button functions
def set_prompt(text):
return text
hello_btn.click(
lambda: set_prompt("A simple hello world app that greets the user by name"),
inputs=None,
outputs=prompt
)
calc_btn.click(
lambda: set_prompt("A calculator app that can add, subtract, multiply and divide two numbers"),
inputs=None,
outputs=prompt
)
img_btn.click(
lambda: set_prompt("An image filter app that can apply grayscale, invert, and sepia filters to images"),
inputs=None,
outputs=prompt
)
# Main function to generate and run the app
def generate_and_run_app(prompt_text):
if not prompt_text:
return (
"Please enter a description of the app you want to generate.",
"",
"""<div style="text-align:center; padding:20px;">
<h3>No App Generated</h3>
<p>Please enter a description first.</p>
</div>"""
)
# Get code from LLM (simulated)
code, error = simulate_llm_response(prompt_text)
if error:
return (
code,
f"Error generating code: {error}",
"""<div style="text-align:center; color:red; padding:20px;">
<h3>Error</h3>
<p>{0}</p>
</div>""".format(error)
)
# Execute the code
demo_obj, exec_error, stdout, stderr = execute_code(code)
log_output = f"STDOUT:\n{stdout}\n\nSTDERR:\n{stderr}"
if exec_error:
return (
code,
f"Error: {exec_error}",
"""<div style="text-align:center; color:red; padding:20px;">
<h3>Execution Error</h3>
<p>{0}</p>
</div>""".format(exec_error)
)
try:
# Render the demo to HTML
rendered_html = demo_obj.render().replace('window.gradio_mode = "app";', '')
return code, f"✅ App generated and running!", rendered_html
except Exception as e:
import traceback
return (
code,
f"Error rendering app: {str(e)}",
"""<div style="text-align:center; color:red; padding:20px;">
<h3>Rendering Error</h3>
<p>{0}</p>
</div>""".format(traceback.format_exc())
)
# Connect the generate button
generate_btn.click(
generate_and_run_app,
inputs=prompt,
outputs=[code_display, log_output, app_container]
)
# Launch the app
if __name__ == "__main__":
app.launch(server_name="0.0.0.0", server_port=7860)