namannn's picture
Update app.py
82a2d2f verified
raw
history blame
1.65 kB
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("namannn/llama2-13b-hyperbolic-cluster-pruned")
model = AutoModelForCausalLM.from_pretrained("namannn/llama2-13b-hyperbolic-cluster-pruned")
# Streamlit UI components
st.title("Text Generation with LLaMa2-13b Hyperbolic Model")
st.write("Enter a prompt below and the model will generate text.")
# User input for prompt
prompt = st.text_area("Input Prompt", "Once upon a time, in a land far away")
# Slider for controlling the length of the output
max_length = st.slider("Max Length of Generated Text", min_value=50, max_value=200, value=100)
# Button to trigger text generation
if st.button("Generate Text"):
if prompt:
# Encode the prompt text
inputs = tokenizer(prompt, return_tensors="pt")
# Generate text with the model
outputs = model.generate(
inputs["input_ids"],
max_length=max_length,
num_return_sequences=1,
no_repeat_ngram_size=2, # You can tune this for diversity
do_sample=True, # Use sampling for diverse generation
top_k=50, # Top-k sampling for diversity
top_p=0.95, # Top-p (nucleus) sampling
temperature=0.7 # Control randomness (lower = more deterministic)
)
# Decode and display generated text
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
st.subheader("Generated Text:")
st.write(generated_text)
else:
st.warning("Please enter a prompt to generate text.")