Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Load model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("namannn/llama2-13b-hyperbolic-cluster-pruned") | |
model = AutoModelForCausalLM.from_pretrained("namannn/llama2-13b-hyperbolic-cluster-pruned") | |
# Streamlit UI components | |
st.title("Text Generation with LLaMa2-13b Hyperbolic Model") | |
st.write("Enter a prompt below and the model will generate text.") | |
# User input for prompt | |
prompt = st.text_area("Input Prompt", "Once upon a time, in a land far away") | |
# Slider for controlling the length of the output | |
max_length = st.slider("Max Length of Generated Text", min_value=50, max_value=200, value=100) | |
# Button to trigger text generation | |
if st.button("Generate Text"): | |
if prompt: | |
# Encode the prompt text | |
inputs = tokenizer(prompt, return_tensors="pt") | |
# Generate text with the model | |
outputs = model.generate( | |
inputs["input_ids"], | |
max_length=max_length, | |
num_return_sequences=1, | |
no_repeat_ngram_size=2, # You can tune this for diversity | |
do_sample=True, # Use sampling for diverse generation | |
top_k=50, # Top-k sampling for diversity | |
top_p=0.95, # Top-p (nucleus) sampling | |
temperature=0.7 # Control randomness (lower = more deterministic) | |
) | |
# Decode and display generated text | |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
st.subheader("Generated Text:") | |
st.write(generated_text) | |
else: | |
st.warning("Please enter a prompt to generate text.") | |