Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,42 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import
|
3 |
|
4 |
-
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
st.
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
st.write(f"Sentiment: {sentiment}")
|
16 |
-
st.write(f"Confidence: {confidence:.2f}")
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
|
4 |
+
# Load model and tokenizer
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained("namannn/llama2-13b-hyperbolic-cluster-pruned")
|
6 |
+
model = AutoModelForCausalLM.from_pretrained("namannn/llama2-13b-hyperbolic-cluster-pruned")
|
7 |
|
8 |
+
# Streamlit UI components
|
9 |
+
st.title("Text Generation with LLaMa2-13b Hyperbolic Model")
|
10 |
+
st.write("Enter a prompt below and the model will generate text.")
|
11 |
|
12 |
+
# User input for prompt
|
13 |
+
prompt = st.text_area("Input Prompt", "Once upon a time, in a land far away")
|
14 |
+
|
15 |
+
# Slider for controlling the length of the output
|
16 |
+
max_length = st.slider("Max Length of Generated Text", min_value=50, max_value=200, value=100)
|
17 |
+
|
18 |
+
# Button to trigger text generation
|
19 |
+
if st.button("Generate Text"):
|
20 |
+
if prompt:
|
21 |
+
# Encode the prompt text
|
22 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
23 |
+
|
24 |
+
# Generate text with the model
|
25 |
+
outputs = model.generate(
|
26 |
+
inputs["input_ids"],
|
27 |
+
max_length=max_length,
|
28 |
+
num_return_sequences=1,
|
29 |
+
no_repeat_ngram_size=2, # You can tune this for diversity
|
30 |
+
do_sample=True, # Use sampling for diverse generation
|
31 |
+
top_k=50, # Top-k sampling for diversity
|
32 |
+
top_p=0.95, # Top-p (nucleus) sampling
|
33 |
+
temperature=0.7 # Control randomness (lower = more deterministic)
|
34 |
+
)
|
35 |
+
|
36 |
+
# Decode and display generated text
|
37 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
38 |
+
st.subheader("Generated Text:")
|
39 |
+
st.write(generated_text)
|
40 |
+
else:
|
41 |
+
st.warning("Please enter a prompt to generate text.")
|
42 |
|
|
|
|