Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,42 +1,81 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
if st.button("Generate Text"):
|
20 |
-
if prompt:
|
21 |
-
# Encode the prompt text
|
22 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
23 |
-
|
24 |
-
# Generate text with the model
|
25 |
-
outputs = model.generate(
|
26 |
-
inputs["input_ids"],
|
27 |
-
max_length=max_length,
|
28 |
-
num_return_sequences=1,
|
29 |
-
no_repeat_ngram_size=2, # You can tune this for diversity
|
30 |
-
do_sample=True, # Use sampling for diverse generation
|
31 |
-
top_k=50, # Top-k sampling for diversity
|
32 |
-
top_p=0.95, # Top-p (nucleus) sampling
|
33 |
-
temperature=0.7 # Control randomness (lower = more deterministic)
|
34 |
-
)
|
35 |
-
|
36 |
-
# Decode and display generated text
|
37 |
-
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
38 |
-
st.subheader("Generated Text:")
|
39 |
-
st.write(generated_text)
|
40 |
-
else:
|
41 |
-
st.warning("Please enter a prompt to generate text.")
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
|
5 |
+
@st.cache_resource
|
6 |
+
def load_model_and_tokenizer():
|
7 |
+
"""
|
8 |
+
Load model and tokenizer with Streamlit's caching to prevent reloading.
|
9 |
+
@st.cache_resource ensures the model is loaded only once per session.
|
10 |
+
"""
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained("namannn/llama2-13b-hyperbolic-cluster-pruned")
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(
|
13 |
+
"namannn/llama2-13b-hyperbolic-cluster-pruned",
|
14 |
+
# Optional: specify device and precision to optimize loading
|
15 |
+
device_map="auto", # Automatically distribute model across available GPUs/CPU
|
16 |
+
torch_dtype=torch.float16, # Use half precision to reduce memory usage
|
17 |
+
low_cpu_mem_usage=True # Optimize memory usage during model loading
|
18 |
+
)
|
19 |
+
return tokenizer, model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
def generate_text(prompt, tokenizer, model, max_length):
|
22 |
+
"""
|
23 |
+
Generate text using the loaded model and tokenizer.
|
24 |
+
"""
|
25 |
+
# Encode the prompt text
|
26 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
27 |
+
|
28 |
+
# Generate text with the model
|
29 |
+
outputs = model.generate(
|
30 |
+
inputs["input_ids"],
|
31 |
+
max_length=max_length,
|
32 |
+
num_return_sequences=1,
|
33 |
+
no_repeat_ngram_size=2,
|
34 |
+
do_sample=True,
|
35 |
+
top_k=50,
|
36 |
+
top_p=0.95,
|
37 |
+
temperature=0.7
|
38 |
+
)
|
39 |
+
|
40 |
+
# Decode and return generated text
|
41 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
42 |
+
return generated_text
|
43 |
+
|
44 |
+
def main():
|
45 |
+
# Set page title and icon
|
46 |
+
st.set_page_config(page_title="LLaMa2 Text Generation", page_icon="✍️")
|
47 |
+
|
48 |
+
# Page title and description
|
49 |
+
st.title("Text Generation with LLaMa2-13b Hyperbolic Model")
|
50 |
+
st.write("Enter a prompt below and the model will generate text.")
|
51 |
+
|
52 |
+
# Load model and tokenizer (only once)
|
53 |
+
try:
|
54 |
+
tokenizer, model = load_model_and_tokenizer()
|
55 |
+
except Exception as e:
|
56 |
+
st.error(f"Error loading model: {e}")
|
57 |
+
return
|
58 |
+
|
59 |
+
# User input for prompt
|
60 |
+
prompt = st.text_area("Input Prompt", "Once upon a time, in a land far away")
|
61 |
+
|
62 |
+
# Slider for controlling the length of the output
|
63 |
+
max_length = st.slider("Max Length of Generated Text", min_value=50, max_value=200, value=100)
|
64 |
+
|
65 |
+
# Button to trigger text generation
|
66 |
+
if st.button("Generate Text"):
|
67 |
+
if prompt:
|
68 |
+
try:
|
69 |
+
# Generate text
|
70 |
+
generated_text = generate_text(prompt, tokenizer, model, max_length)
|
71 |
+
|
72 |
+
# Display generated text
|
73 |
+
st.subheader("Generated Text:")
|
74 |
+
st.write(generated_text)
|
75 |
+
except Exception as e:
|
76 |
+
st.error(f"Error generating text: {e}")
|
77 |
+
else:
|
78 |
+
st.warning("Please enter a prompt to generate text.")
|
79 |
+
|
80 |
+
if __name__ == "__main__":
|
81 |
+
main()
|