Spaces:
Sleeping
Sleeping
File size: 10,434 Bytes
f871a33 05661ec f871a33 627e1c6 d582d65 bdcefa0 f871a33 d582d65 05661ec d582d65 05661ec d582d65 05661ec 627e1c6 f871a33 05661ec f871a33 05661ec 627e1c6 f871a33 bdcefa0 d582d65 f871a33 627e1c6 f871a33 d582d65 f871a33 05661ec 627e1c6 f871a33 bdcefa0 f871a33 bdcefa0 f871a33 627e1c6 f871a33 627e1c6 f871a33 05661ec 627e1c6 bdcefa0 f871a33 05661ec f871a33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import gradio as gr
from langchain_community.llms import LlamaCpp
import os
import json
import torch
import logging
from typing import Optional, List, Dict, Any
from fastapi import FastAPI, HTTPException, Request
from fastapi.responses import JSONResponse
from pydantic import BaseModel
import uvicorn
import time
from threading import Lock
from pathlib import Path
from huggingface_hub import hf_hub_download, list_repo_files
from contextlib import asynccontextmanager
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class ChatCompletionRequest(BaseModel):
model: str
messages: List[Dict[str, str]]
temperature: Optional[float] = 0.7
max_tokens: Optional[int] = 2048
stream: Optional[bool] = False
def get_model_filename():
"""Get the correct model filename from the repository."""
try:
logger.info("Listing repository files...")
files = list_repo_files("G17c21ds/Qwen2.5-14B-Instruct-Uncensored-Q8_0-GGUF")
gguf_files = [f for f in files if f.endswith('.gguf')]
if not gguf_files:
raise ValueError("No GGUF model files found in repository")
logger.info(f"Found model files: {gguf_files}")
return gguf_files[0]
except Exception as e:
logger.error(f"Error listing repository files: {str(e)}")
raise
def download_model_from_hf():
"""Download the model file from Hugging Face."""
try:
logger.info("Downloading model from Hugging Face Hub...")
model_dir = Path("models")
model_dir.mkdir(exist_ok=True)
model_filename = get_model_filename()
logger.info(f"Using model file: {model_filename}")
local_path = hf_hub_download(
repo_id="G17c21ds/Qwen2.5-14B-Instruct-Uncensored-Q8_0-GGUF",
filename=model_filename,
local_dir=model_dir,
local_dir_use_symlinks=False
)
return Path(local_path)
except Exception as e:
logger.error(f"Error downloading model: {str(e)}")
raise
class QwenModel:
def __init__(self):
"""Initialize the Qwen model with automatic device detection."""
try:
self.has_gpu = torch.cuda.is_available()
self.device_count = torch.cuda.device_count() if self.has_gpu else 0
logger.info(f"GPU available: {self.has_gpu}, Device count: {self.device_count}")
model_path = download_model_from_hf()
logger.info(f"Model path: {model_path}")
n_gpu_layers = 40 if self.has_gpu else 0
logger.info(f"Using {'GPU' if self.has_gpu else 'CPU'} for inference")
n_batch = 512 if self.has_gpu else 64
n_ctx = 2048 if not self.has_gpu else 4096
self.llm = LlamaCpp(
model_path=str(model_path),
n_gpu_layers=n_gpu_layers,
n_ctx=n_ctx,
n_batch=n_batch,
verbose=True,
temperature=0.7,
max_tokens=2048,
top_p=0.95,
top_k=50,
f16_kv=self.has_gpu,
use_mlock=True,
use_mmap=True,
seed=42,
repeat_penalty=1.1,
rope_scaling={"type": "linear", "factor": 1.0},
)
self.lock = Lock()
except Exception as e:
logger.error(f"Failed to initialize model: {str(e)}")
raise
def generate_cot_prompt(self, messages: List[Dict[str, str]]) -> str:
"""Generate a chain-of-thought prompt from message history."""
conversation = []
for msg in messages:
role = msg.get("role", "")
content = msg.get("content", "")
if role == "system":
conversation.append(f"System: {content}")
elif role == "user":
conversation.append(f"Human: {content}")
elif role == "assistant":
conversation.append(f"Assistant: {content}")
last_user_msg = next((msg["content"] for msg in reversed(messages)
if msg["role"] == "user"), None)
if not last_user_msg:
raise ValueError("No user message found in the conversation")
cot_template = f"""Previous conversation:
{chr(10).join(conversation)}
Let's approach the latest question step-by-step:
1. Understanding the question:
{last_user_msg}
2. Breaking down components:
- Key elements to consider
- Specific information requested
- Relevant constraints
3. Reasoning process:
- Systematic approach
- Applicable knowledge
- Potential challenges
4. Step-by-step solution:
"""
return cot_template
def process_response(self, response: str) -> str:
"""Process and format the model's response."""
try:
response = response.strip()
if not response.startswith("Step"):
response = "Step-by-step solution:\n" + response
return response
except Exception as e:
logger.error(f"Error processing response: {str(e)}")
return "Error processing response"
def generate_response(self,
messages: List[Dict[str, str]],
temperature: float = 0.7,
max_tokens: int = 2048) -> Dict[str, Any]:
"""Generate a response using chain-of-thought reasoning."""
try:
with self.lock:
full_prompt = self.generate_cot_prompt(messages)
start_time = time.time()
response = self.llm(
full_prompt,
temperature=temperature,
max_tokens=max_tokens
)
end_time = time.time()
processed_response = self.process_response(response)
return {
"id": f"chatcmpl-{int(time.time()*1000)}",
"object": "chat.completion",
"created": int(time.time()),
"model": "qwen-2.5-14b",
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": processed_response
},
"finish_reason": "stop"
}],
"usage": {
"prompt_tokens": len(full_prompt.split()),
"completion_tokens": len(processed_response.split()),
"total_tokens": len(full_prompt.split()) + len(processed_response.split())
},
"system_info": {
"device": "gpu" if self.has_gpu else "cpu",
"processing_time": round(end_time - start_time, 2)
}
}
except Exception as e:
logger.error(f"Error generating response: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
def create_gradio_interface(model: QwenModel):
"""Create and configure the Gradio interface."""
def predict(message: str,
temperature: float,
max_tokens: int) -> str:
messages = [{"role": "user", "content": message}]
response = model.generate_response(
messages,
temperature=temperature,
max_tokens=max_tokens
)
return response["choices"][0]["message"]["content"]
iface = gr.Interface(
fn=predict,
inputs=[
gr.Textbox(
label="Input",
placeholder="Enter your question or task here...",
lines=5
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.7,
label="Temperature",
info="Higher values make the output more random"
),
gr.Slider(
minimum=64,
maximum=4096,
value=2048,
step=64,
label="Max Tokens",
info="Maximum length of the generated response"
)
],
outputs=gr.Textbox(label="Response", lines=10),
title="Qwen 2.5 14B Instruct Model",
description="""This is a Qwen 2.5 14B model interface with chain-of-thought prompting.
The model will break down complex problems and solve them step by step.""",
examples=[
["Explain how photosynthesis works", 0.7, 2048],
["Solve the quadratic equation: x² + 5x + 6 = 0", 0.7, 1024],
["What are the implications of Moore's Law for future computing?", 0.8, 2048]
]
)
return iface
# Initialize FastAPI with lifespan
app = FastAPI(title="Qwen 2.5 API")
# Global model instance
model = None
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Lifespan context manager for FastAPI startup and shutdown events."""
global model
try:
model = QwenModel()
logger.info("Model initialized successfully")
yield
finally:
pass
app = FastAPI(lifespan=lifespan)
@app.post("/v1/chat/completions")
async def create_chat_completion(request: ChatCompletionRequest):
"""OpenAI-compatible chat completions endpoint."""
try:
response = model.generate_response(
request.messages,
temperature=request.temperature,
max_tokens=request.max_tokens
)
return JSONResponse(content=response)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
def main():
"""Main function to initialize and launch the application."""
try:
global model
if model is None:
model = QwenModel()
interface = create_gradio_interface(model)
app.mount("/", interface.app)
uvicorn.run(
app,
host="0.0.0.0",
port=7860,
log_level="info"
)
except Exception as e:
logger.error(f"Application failed to start: {str(e)}")
raise
if __name__ == "__main__":
main() |