File size: 5,321 Bytes
9b814d0
090ee0f
9b814d0
 
 
 
 
090ee0f
8d624f6
9b814d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d624f6
7b57a9b
 
 
8d624f6
9b814d0
8d624f6
 
 
 
 
9b814d0
 
 
 
 
 
 
 
 
 
 
 
 
7b57a9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b814d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import logging

import gradio as gr
import pandas as pd
import torch
from GoogleNews import GoogleNews
from transformers import pipeline


# Set up logging
logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)

SENTIMENT_ANALYSIS_MODEL = (
    "mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis"
)

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
logging.info(f"Using device: {DEVICE}")

logging.info("Initializing sentiment analysis model...")
sentiment_analyzer = pipeline(
    "sentiment-analysis", model=SENTIMENT_ANALYSIS_MODEL, device=DEVICE
)
logging.info("Model initialized successfully")


def fetch_articles(query):
    try:
        logging.info(f"Fetching articles for query: '{query}'")
        googlenews = GoogleNews(lang="en")
        googlenews.search(query)
        articles = googlenews.result()
        logging.info(f"Fetched {len(articles)} articles")
        return articles
    except Exception as e:
        logging.error(
            f"Error while searching articles for query: '{query}'. Error: {e}"
        )
        raise gr.Error(
            f"Unable to search articles for query: '{query}'. Try again later...",
            duration=5,
        )


def analyze_article_sentiment(article):
    logging.info(f"Analyzing sentiment for article: {article['title']}")
    sentiment = sentiment_analyzer(article["desc"])[0]
    article["sentiment"] = sentiment
    return article


def analyze_asset_sentiment(asset_name):
    logging.info(f"Starting sentiment analysis for asset: {asset_name}")

    logging.info("Fetching articles")
    articles = fetch_articles(asset_name)

    logging.info("Analyzing sentiment of each article")
    analyzed_articles = [analyze_article_sentiment(article) for article in articles]

    logging.info("Sentiment analysis completed")

    return convert_to_dataframe(analyzed_articles)


def convert_to_dataframe(analyzed_articles):
    df = pd.DataFrame(analyzed_articles)
    df["Title"] = df.apply(
        lambda row: f'<a href="{row["link"]}" target="_blank">{row["title"]}</a>',
        axis=1,
    )
    df["Description"] = df["desc"]
    df["Date"] = df["date"]

    def sentiment_badge(sentiment):
        colors = {
            "negative": "red",
            "neutral": "gray",
            "positive": "green",
        }
        color = colors.get(sentiment, "grey")
        return f'<span style="background-color: {color}; color: white; padding: 2px 6px; border-radius: 4px;">{sentiment}</span>'

    df["Sentiment"] = df["sentiment"].apply(lambda x: sentiment_badge(x["label"]))
    return df[["Sentiment", "Title", "Description", "Date"]]


with gr.Blocks() as iface:
    gr.Markdown("# Trading Asset Sentiment Analysis")
    gr.Markdown("Analyze the sentiment of recent articles related to a trading asset.")
    gr.Markdown(
        f"### πŸ‘¨β€πŸ’» Author: [**Nanda Safiq Alfiansyah**](https://ndav.my.id)"
    )
    gr.Markdown("### πŸ†” NIM: 21533401 | Kelas: TI 7A")
    gr.Markdown(
        """
        πŸ”Ž **How it works:**  
        Enter the name of a trading asset below, and I'll fetch the latest articles 
        and provide a detailed sentiment analysis. Let's dive in!
        """
    )

    with gr.Row():
        input_asset = gr.Textbox(
            label="Asset Name",
            lines=1,
            placeholder="Enter the name of the trading asset...",
        )

    with gr.Row():
        analyze_button = gr.Button("Analyze Sentiment", size="sm")

    gr.Examples(
       examples=[
        # Cryptocurrencies
        "Bitcoin",
        "Ethereum",
        "Ripple",
        "Litecoin",
        "Binance Coin",
        "Cardano",
        "Polkadot",
        "Solana",

        # Tech stocks
        "Tesla",
        "Apple",
        "Amazon",
        "Microsoft",
        "Meta",
        "Google",
        "Netflix",
        "NVIDIA",

        # Commodities
        "Gold",
        "Silver",
        "Platinum",
        "Crude Oil",
        "Natural Gas",
        "Copper",

        # Indices
        "S&P 500",
        "Dow Jones",
        "Nasdaq 100",
        "FTSE 100",
        "DAX 30",
        "Nikkei 225",
        "Hang Seng",

        # Forex pairs
        "USD/EUR",
        "USD/JPY",
        "GBP/USD",
        "AUD/USD",
        "USD/CAD",
        "USD/CHF",

        # Global companies
        "Alibaba",
        "Samsung",
        "Toyota",
        "Sony",
        "Roche",
        "Volkswagen",
        "Tencent",
        "HSBC",

        # Other popular assets
        "Coca-Cola",
        "PepsiCo",
        "McDonald's",
        "Procter & Gamble",
        "Johnson & Johnson",
        "Intel",
        "IBM",
    ],
    inputs=input_asset,
    )

    with gr.Row():
        with gr.Column():
            with gr.Blocks():
                gr.Markdown("## Articles and Sentiment Analysis")
                articles_output = gr.Dataframe(
                    headers=["Sentiment", "Title", "Description", "Date"],
                    datatype=["markdown", "html", "markdown", "markdown"],
                    wrap=False,
                )

    analyze_button.click(
        analyze_asset_sentiment,
        inputs=[input_asset],
        outputs=[articles_output],
    )

logging.info("Launching Gradio interface")
iface.queue().launch()