app / app.py
nandadev's picture
update
7b57a9b
import logging
import gradio as gr
import pandas as pd
import torch
from GoogleNews import GoogleNews
from transformers import pipeline
# Set up logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
SENTIMENT_ANALYSIS_MODEL = (
"mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis"
)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
logging.info(f"Using device: {DEVICE}")
logging.info("Initializing sentiment analysis model...")
sentiment_analyzer = pipeline(
"sentiment-analysis", model=SENTIMENT_ANALYSIS_MODEL, device=DEVICE
)
logging.info("Model initialized successfully")
def fetch_articles(query):
try:
logging.info(f"Fetching articles for query: '{query}'")
googlenews = GoogleNews(lang="en")
googlenews.search(query)
articles = googlenews.result()
logging.info(f"Fetched {len(articles)} articles")
return articles
except Exception as e:
logging.error(
f"Error while searching articles for query: '{query}'. Error: {e}"
)
raise gr.Error(
f"Unable to search articles for query: '{query}'. Try again later...",
duration=5,
)
def analyze_article_sentiment(article):
logging.info(f"Analyzing sentiment for article: {article['title']}")
sentiment = sentiment_analyzer(article["desc"])[0]
article["sentiment"] = sentiment
return article
def analyze_asset_sentiment(asset_name):
logging.info(f"Starting sentiment analysis for asset: {asset_name}")
logging.info("Fetching articles")
articles = fetch_articles(asset_name)
logging.info("Analyzing sentiment of each article")
analyzed_articles = [analyze_article_sentiment(article) for article in articles]
logging.info("Sentiment analysis completed")
return convert_to_dataframe(analyzed_articles)
def convert_to_dataframe(analyzed_articles):
df = pd.DataFrame(analyzed_articles)
df["Title"] = df.apply(
lambda row: f'<a href="{row["link"]}" target="_blank">{row["title"]}</a>',
axis=1,
)
df["Description"] = df["desc"]
df["Date"] = df["date"]
def sentiment_badge(sentiment):
colors = {
"negative": "red",
"neutral": "gray",
"positive": "green",
}
color = colors.get(sentiment, "grey")
return f'<span style="background-color: {color}; color: white; padding: 2px 6px; border-radius: 4px;">{sentiment}</span>'
df["Sentiment"] = df["sentiment"].apply(lambda x: sentiment_badge(x["label"]))
return df[["Sentiment", "Title", "Description", "Date"]]
with gr.Blocks() as iface:
gr.Markdown("# Trading Asset Sentiment Analysis")
gr.Markdown("Analyze the sentiment of recent articles related to a trading asset.")
gr.Markdown(
f"### πŸ‘¨β€πŸ’» Author: [**Nanda Safiq Alfiansyah**](https://ndav.my.id)"
)
gr.Markdown("### πŸ†” NIM: 21533401 | Kelas: TI 7A")
gr.Markdown(
"""
πŸ”Ž **How it works:**
Enter the name of a trading asset below, and I'll fetch the latest articles
and provide a detailed sentiment analysis. Let's dive in!
"""
)
with gr.Row():
input_asset = gr.Textbox(
label="Asset Name",
lines=1,
placeholder="Enter the name of the trading asset...",
)
with gr.Row():
analyze_button = gr.Button("Analyze Sentiment", size="sm")
gr.Examples(
examples=[
# Cryptocurrencies
"Bitcoin",
"Ethereum",
"Ripple",
"Litecoin",
"Binance Coin",
"Cardano",
"Polkadot",
"Solana",
# Tech stocks
"Tesla",
"Apple",
"Amazon",
"Microsoft",
"Meta",
"Google",
"Netflix",
"NVIDIA",
# Commodities
"Gold",
"Silver",
"Platinum",
"Crude Oil",
"Natural Gas",
"Copper",
# Indices
"S&P 500",
"Dow Jones",
"Nasdaq 100",
"FTSE 100",
"DAX 30",
"Nikkei 225",
"Hang Seng",
# Forex pairs
"USD/EUR",
"USD/JPY",
"GBP/USD",
"AUD/USD",
"USD/CAD",
"USD/CHF",
# Global companies
"Alibaba",
"Samsung",
"Toyota",
"Sony",
"Roche",
"Volkswagen",
"Tencent",
"HSBC",
# Other popular assets
"Coca-Cola",
"PepsiCo",
"McDonald's",
"Procter & Gamble",
"Johnson & Johnson",
"Intel",
"IBM",
],
inputs=input_asset,
)
with gr.Row():
with gr.Column():
with gr.Blocks():
gr.Markdown("## Articles and Sentiment Analysis")
articles_output = gr.Dataframe(
headers=["Sentiment", "Title", "Description", "Date"],
datatype=["markdown", "html", "markdown", "markdown"],
wrap=False,
)
analyze_button.click(
analyze_asset_sentiment,
inputs=[input_asset],
outputs=[articles_output],
)
logging.info("Launching Gradio interface")
iface.queue().launch()