Files changed (2) hide show
  1. dist/index.html +1 -1
  2. src/index.html +1 -1
dist/index.html CHANGED
@@ -434,7 +434,7 @@
434
  \end{aligned}
435
  </d-math>
436
 
437
- <p>Now let’s have look how things change if we use a lower precision. For stability reasons (see <a target="_self" href="#mixed_precision_training">the mixed-precision training section below</a>) we often don't use full low precision training but a mix of higher and lower precision called "mixed precision"<d-cite bibtex-key="micikevicius2018mixedprecisiontraining"></d-cite>. The default nowadays for mixed precision training is to generally use BF16 for most of the computations –requiring 2 bytes per parameter and gradient– as well as an additional copy of the model weights and gradients in FP32, thus 12 bytes per parameter in total. In addition to the parameters and gradient, we need to store the optimizer states: for the Adam optimizer, this requires the momentum and the variance usually stored in FP32 for numerical stability, each using 4 bytes. </p>
438
 
439
  <aside>See some more details below when we cover the ZeRO methods.</aside>
440
 
 
434
  \end{aligned}
435
  </d-math>
436
 
437
+ <p>Now, let’s have a look at how things change if we use a lower precision. For stability reasons (see <a target="_self" href="#mixed_precision_training">the mixed-precision training section below</a>), we often don't use full low precision training but a mix of higher and lower precision called "mixed precision"<d-cite bibtex-key="micikevicius2018mixedprecisiontraining"></d-cite>. The default nowadays for mixed precision training is to generally use BF16 for most of the computations –requiring 2 bytes per parameter and gradient– as well as an additional copy of the model weights and gradients in FP32, thus 12 bytes per parameter in total. In addition to the parameters and gradient, we need to store the optimizer states: for the Adam optimizer, this requires the momentum and the variance usually stored in FP32 for numerical stability, each using 4 bytes. </p>
438
 
439
  <aside>See some more details below when we cover the ZeRO methods.</aside>
440
 
src/index.html CHANGED
@@ -434,7 +434,7 @@
434
  \end{aligned}
435
  </d-math>
436
 
437
- <p>Now let’s have look how things change if we use a lower precision. For stability reasons (see <a target="_self" href="#mixed_precision_training">the mixed-precision training section below</a>) we often don't use full low precision training but a mix of higher and lower precision called "mixed precision"<d-cite bibtex-key="micikevicius2018mixedprecisiontraining"></d-cite>. The default nowadays for mixed precision training is to generally use BF16 for most of the computations –requiring 2 bytes per parameter and gradient– as well as an additional copy of the model weights and gradients in FP32, thus 12 bytes per parameter in total. In addition to the parameters and gradient, we need to store the optimizer states: for the Adam optimizer, this requires the momentum and the variance usually stored in FP32 for numerical stability, each using 4 bytes. </p>
438
 
439
  <aside>See some more details below when we cover the ZeRO methods.</aside>
440
 
 
434
  \end{aligned}
435
  </d-math>
436
 
437
+ <p>Now, let’s have a look at how things change if we use a lower precision. For stability reasons (see <a target="_self" href="#mixed_precision_training">the mixed-precision training section below</a>), we often don't use full low precision training but a mix of higher and lower precision called "mixed precision"<d-cite bibtex-key="micikevicius2018mixedprecisiontraining"></d-cite>. The default nowadays for mixed precision training is to generally use BF16 for most of the computations –requiring 2 bytes per parameter and gradient– as well as an additional copy of the model weights and gradients in FP32, thus 12 bytes per parameter in total. In addition to the parameters and gradient, we need to store the optimizer states: for the Adam optimizer, this requires the momentum and the variance usually stored in FP32 for numerical stability, each using 4 bytes. </p>
438
 
439
  <aside>See some more details below when we cover the ZeRO methods.</aside>
440