Spaces:
Sleeping
Sleeping
import streamlit as st | |
import os | |
import pickle | |
import faiss | |
import logging | |
from multiprocessing import Lock | |
from multiprocessing.managers import BaseManager | |
from llama_index.callbacks import CallbackManager, LlamaDebugHandler | |
from llama_index import VectorStoreIndex, Document,Prompt, SimpleDirectoryReader, ServiceContext, StorageContext, load_index_from_storage | |
from llama_index.chat_engine import CondenseQuestionChatEngine; | |
from llama_index.node_parser import SimpleNodeParser | |
from llama_index.langchain_helpers.text_splitter import TokenTextSplitter | |
from llama_index.constants import DEFAULT_CHUNK_OVERLAP | |
from llama_index.response_synthesizers import get_response_synthesizer | |
from llama_index.vector_stores.faiss import FaissVectorStore | |
from llama_index.graph_stores import SimpleGraphStore | |
from llama_index.storage.docstore import SimpleDocumentStore | |
from llama_index.storage.index_store import SimpleIndexStore | |
import tiktoken | |
from streamlit import runtime | |
from streamlit.runtime.scriptrunner import get_script_run_ctx | |
import ipaddress | |
from requests_oauthlib import OAuth2Session | |
from time import time | |
from dotenv import load_dotenv | |
from streamlit import net_util | |
load_dotenv() | |
# 接続元制御 | |
ALLOW_IP_ADDRESS = os.environ["ALLOW_IP_ADDRESS"] | |
# Azure AD app registration details | |
CLIENT_ID = os.environ["CLIENT_ID"] | |
CLIENT_SECRET = os.environ["CLIENT_SECRET"] | |
TENANT_ID = os.environ["TENANT_ID"] | |
# Azure API | |
AUTHORITY = f"https://login.microsoftonline.com/{TENANT_ID}" | |
REDIRECT_PATH = os.environ["REDIRECT_PATH"] | |
TOKEN_URL = f"{AUTHORITY}/oauth2/v2.0/token" | |
AUTHORIZATION_URL = f"{AUTHORITY}/oauth2/v2.0/authorize" | |
SCOPES = ["openid", "profile", "User.Read"] | |
# 認証用URL取得 | |
def authorization_request(): | |
oauth = OAuth2Session(CLIENT_ID, redirect_uri=REDIRECT_PATH, scope=SCOPES) | |
authorization_url, state = oauth.authorization_url(AUTHORIZATION_URL) | |
return authorization_url, state | |
# 認証トークン取得 | |
def token_request(authorization_response, state): | |
oauth = OAuth2Session(CLIENT_ID, state=state) | |
token = oauth.fetch_token( | |
TOKEN_URL, | |
code=authorization_response[0], | |
authorization_response=authorization_response, | |
client_secret=CLIENT_SECRET, | |
) | |
return token | |
index_name = "./data/storage" | |
pkl_name = "./data/stored_documents.pkl" | |
custom_prompt = Prompt("""\ | |
以下はこれまでの会話履歴と、ドキュメントを検索して回答する必要がある、ユーザーからの会話文です。 | |
会話と新しい会話文に基づいて、検索クエリを作成します。回答は日本語で行います。 | |
新しい会話文が挨拶の場合、挨拶を返してください。 | |
新しい会話文が質問の場合、検索した結果の回答を返してください。 | |
答えがわからない場合は正直にわからないと回答してください。 | |
会話履歴: | |
{chat_history} | |
新しい会話文: | |
{question} | |
Search query: | |
""") | |
chat_history = [] | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger("__name__") | |
logger.debug("調査用ログ") | |
def initialize_index(): | |
logger.info("initialize_index start") | |
text_splitter = TokenTextSplitter(separator="。", chunk_size=1500 | |
, chunk_overlap=DEFAULT_CHUNK_OVERLAP | |
, tokenizer=tiktoken.encoding_for_model("gpt-3.5-turbo").encode) | |
node_parser = SimpleNodeParser(text_splitter=text_splitter) | |
d = 1536 | |
k=2 | |
faiss_index = faiss.IndexFlatL2(d) | |
# デバッグ用 | |
llama_debug_handler = LlamaDebugHandler() | |
callback_manager = CallbackManager([llama_debug_handler]) | |
service_context = ServiceContext.from_defaults(node_parser=node_parser,callback_manager=callback_manager) | |
lock = Lock() | |
with lock: | |
if os.path.exists(index_name): | |
storage_context = StorageContext.from_defaults( | |
docstore=SimpleDocumentStore.from_persist_dir(persist_dir=index_name), | |
graph_store=SimpleGraphStore.from_persist_dir(persist_dir=index_name), | |
vector_store=FaissVectorStore.from_persist_dir(persist_dir=index_name), | |
index_store=SimpleIndexStore.from_persist_dir(persist_dir=index_name), | |
) | |
st.session_state.index = load_index_from_storage(storage_context=storage_context,service_context=service_context) | |
response_synthesizer = get_response_synthesizer(response_mode='refine') | |
st.session_state.query_engine = st.session_state.index.as_query_engine(response_synthesizer=response_synthesizer,service_context=service_context) | |
st.session_state.chat_engine = CondenseQuestionChatEngine.from_defaults( | |
query_engine=st.session_state.query_engine, | |
condense_question_prompt=custom_prompt, | |
chat_history=chat_history, | |
verbose=True | |
) | |
else: | |
documents = SimpleDirectoryReader("./documents").load_data() | |
vector_store = FaissVectorStore(faiss_index=faiss_index) | |
storage_context = StorageContext.from_defaults(vector_store=vector_store) | |
st.session_state.index = VectorStoreIndex.from_documents(documents, storage_context=storage_context,service_context=service_context) | |
st.session_state.index.storage_context.persist(persist_dir=index_name) | |
response_synthesizer = get_response_synthesizer(response_mode='refine') | |
st.session_state.query_engine = st.session_state.index.as_query_engine(response_synthesizer=response_synthesizer,service_context=service_context) | |
st.session_state.chat_engine = CondenseQuestionChatEngine.from_defaults( | |
query_engine=st.session_state.query_engine, | |
condense_question_prompt=custom_prompt, | |
chat_history=chat_history, | |
verbose=True | |
) | |
if os.path.exists(pkl_name): | |
with open(pkl_name, "rb") as f: | |
st.session_state.stored_docs = pickle.load(f) | |
else: | |
st.session_state.stored_docs=list() | |
# 接続元IP取得 | |
def get_remote_ip(): | |
ctx = get_script_run_ctx() | |
session_info = runtime.get_instance().get_client(ctx.session_id) | |
return session_info.request.remote_ip | |
# 接続元IP許可判定 | |
def is_allow_ip_address(): | |
remote_ip = get_remote_ip() | |
logger.info("remote_ip") | |
logger.info(remote_ip) | |
# localhost | |
if remote_ip == "::1": | |
return True | |
# プライベートIP | |
ipaddr = ipaddress.IPv4Address(remote_ip) | |
logger.info("ipaddr") | |
logger.info(ipaddr) | |
if ipaddr.is_private: | |
return True | |
# その他(許可リスト判定) | |
return remote_ip in ALLOW_IP_ADDRESS | |
def logout(): | |
st.session_state["token"] = None | |
st.session_state["token_expires"] = None | |
st.session_state["authorization_state"] = None | |
# メイン | |
def app(): | |
# 初期化 | |
st.session_state["token"] = None | |
st.session_state["token_expires"] = time() | |
st.session_state["authorization_state"] = None | |
# 接続元IP許可判定 | |
if not is_allow_ip_address(): | |
st.title("HTTP 403 Forbidden") | |
return | |
# 接続元OK | |
st.title("Azure AD Login with Streamlit") | |
# 認証後のリダイレクトのGETパラメータ値を取得 | |
authorization_response = st.experimental_get_query_params().get("code") | |
# 認証OK、トークン無し | |
if authorization_response and st.session_state["token"] is None: | |
# トークン設定 | |
token = token_request(authorization_response, st.session_state["authorization_state"]) | |
st.session_state["token"] = token | |
st.session_state["token_expires"] = token["expires_at"] | |
# トークン無し or 期限切れ | |
if st.session_state["token"] is None or float(st.session_state["token_expires"]) <= time(): | |
# 認証用リンク表示 | |
authorization_url, st.session_state["authorization_state"] = authorization_request() | |
st.markdown(f'[Click here to log in]({authorization_url})', unsafe_allow_html=True) | |
else: | |
# 認証OK | |
st.markdown(f"Logged in successfully. Welcome, {st.session_state['token']['token_type']}!") | |
if st.button("logout",use_container_width=True): | |
logout() | |
st.experimental_set_query_params() | |
st.experimental_rerun() | |
st.text("サイドバーから利用するメニューをお選びください。") | |
initialize_index() | |
if __name__ == "__main__": | |
if "token" not in st.session_state or st.session_state["token"] is None or float(st.session_state["token_expires"]) <= time(): | |
app() | |
else: | |
st.title("Azure AD Login with Streamlit") | |
if st.button("logout",use_container_width=True): | |
logout() | |
st.experimental_set_query_params() | |
st.experimental_rerun() | |
st.text("ログイン済みです。") | |
st.text("サイドバーから利用するメニューをお選びください。") | |