Spaces:
Build error
Build error
file_client_args = dict(backend='disk') | |
model = dict( | |
type='PSENet', | |
backbone=dict( | |
type='mmdet.ResNet', | |
depth=50, | |
num_stages=4, | |
out_indices=(0, 1, 2, 3), | |
frozen_stages=-1, | |
norm_cfg=dict(type='SyncBN', requires_grad=True), | |
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'), | |
norm_eval=True, | |
style='caffe'), | |
neck=dict( | |
type='FPNF', | |
in_channels=[256, 512, 1024, 2048], | |
out_channels=256, | |
fusion_type='concat'), | |
det_head=dict( | |
type='PSEHead', | |
in_channels=[256], | |
hidden_dim=256, | |
out_channel=7, | |
module_loss=dict(type='PSEModuleLoss'), | |
postprocessor=dict(type='PSEPostprocessor', text_repr_type='poly')), | |
data_preprocessor=dict( | |
type='TextDetDataPreprocessor', | |
mean=[123.675, 116.28, 103.53], | |
std=[58.395, 57.12, 57.375], | |
bgr_to_rgb=True, | |
pad_size_divisor=32)) | |
default_scope = 'mmocr' | |
env_cfg = dict( | |
cudnn_benchmark=True, | |
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), | |
dist_cfg=dict(backend='nccl')) | |
randomness = dict(seed=None) | |
default_hooks = dict( | |
timer=dict(type='IterTimerHook'), | |
logger=dict(type='LoggerHook', interval=100), | |
param_scheduler=dict(type='ParamSchedulerHook'), | |
checkpoint=dict(type='CheckpointHook', interval=5), | |
sampler_seed=dict(type='DistSamplerSeedHook'), | |
sync_buffer=dict(type='SyncBuffersHook'), | |
visualization=dict( | |
type='VisualizationHook', | |
interval=1, | |
enable=False, | |
show=False, | |
draw_gt=False, | |
draw_pred=False)) | |
log_level = 'INFO' | |
log_processor = dict(type='LogProcessor', window_size=100, by_epoch=True) | |
load_from = None | |
resume = True | |
val_evaluator = dict(type='HmeanIOUMetric') | |
test_evaluator = dict(type='HmeanIOUMetric') | |
vis_backends = [dict(type='LocalVisBackend')] | |
visualizer = dict( | |
type='TextDetLocalVisualizer', | |
name='visualizer', | |
vis_backends=[dict(type='LocalVisBackend')]) | |
max_epochs = 50 | |
optim_wrapper = dict( | |
type='OptimWrapper', optimizer=dict(type='Adam', lr=0.001)) | |
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=50, val_interval=20) | |
val_cfg = dict(type='ValLoop') | |
test_cfg = dict(type='TestLoop') | |
param_scheduler = [dict(type='PolyLR', power=0.9, end=50)] | |
train_dataloader = dict( | |
batch_size=10, | |
num_workers=16, | |
persistent_workers=True, | |
sampler=dict(type='DefaultSampler', shuffle=True), | |
dataset=dict( | |
type='OCRDataset', | |
data_root='data/det/vl+vc-textdet', | |
ann_file='textdet_train.json', | |
data_prefix=dict(img_path='imgs/'), | |
filter_cfg=dict(filter_empty_gt=True, min_size=32), | |
pipeline=[ | |
dict( | |
type='LoadImageFromFile', | |
file_client_args=dict(backend='disk'), | |
color_type='color_ignore_orientation'), | |
dict( | |
type='LoadOCRAnnotations', | |
with_polygon=True, | |
with_bbox=True, | |
with_label=True), | |
dict( | |
type='TorchVisionWrapper', | |
op='ColorJitter', | |
brightness=0.12549019607843137, | |
saturation=0.5), | |
dict(type='FixInvalidPolygon'), | |
dict( | |
type='ShortScaleAspectJitter', | |
short_size=736, | |
scale_divisor=32), | |
dict(type='RandomRotate', max_angle=10), | |
dict(type='TextDetRandomCrop', target_size=(736, 736)), | |
dict(type='Pad', size=(736, 736)), | |
dict( | |
type='PackTextDetInputs', | |
meta_keys=('img_path', 'ori_shape', 'img_shape', | |
'scale_factor')) | |
])) | |
val_dataloader = dict( | |
batch_size=4, | |
num_workers=4, | |
persistent_workers=True, | |
sampler=dict(type='DefaultSampler', shuffle=False), | |
dataset=dict( | |
type='OCRDataset', | |
data_root='data/det/textdet-thvote', | |
ann_file='textdet_test.json', | |
data_prefix=dict(img_path='imgs/'), | |
test_mode=True, | |
pipeline=[ | |
dict( | |
type='LoadImageFromFile', | |
file_client_args=dict(backend='disk'), | |
color_type='color_ignore_orientation'), | |
dict(type='Resize', scale=(2240, 2240), keep_ratio=True), | |
dict( | |
type='LoadOCRAnnotations', | |
with_polygon=True, | |
with_bbox=True, | |
with_label=True), | |
dict( | |
type='PackTextDetInputs', | |
meta_keys=('img_path', 'ori_shape', 'img_shape', | |
'scale_factor')) | |
])) | |
test_dataloader = dict( | |
batch_size=4, | |
num_workers=4, | |
persistent_workers=True, | |
sampler=dict(type='DefaultSampler', shuffle=False), | |
dataset=dict( | |
type='OCRDataset', | |
data_root='data/det/textdet-thvote', | |
ann_file='textdet_test.json', | |
data_prefix=dict(img_path='imgs/'), | |
test_mode=True, | |
pipeline=[ | |
dict( | |
type='LoadImageFromFile', | |
file_client_args=dict(backend='disk'), | |
color_type='color_ignore_orientation'), | |
dict(type='Resize', scale=(2240, 2240), keep_ratio=True), | |
dict( | |
type='LoadOCRAnnotations', | |
with_polygon=True, | |
with_bbox=True, | |
with_label=True), | |
dict( | |
type='PackTextDetInputs', | |
meta_keys=('img_path', 'ori_shape', 'img_shape', | |
'scale_factor')) | |
])) | |
auto_scale_lr = dict(base_batch_size=32) | |
launcher = 'none' | |
work_dir = './work_dirs/psenet_resnet50_fpnf_votecount' | |