napatswift commited on
Commit
aa41622
·
1 Parent(s): cc0b98f

Change resnet size

Browse files
main.py CHANGED
@@ -1,11 +1,14 @@
1
  from mmocr.apis import MMOCRInferencer
2
-
3
  import gradio as gr
4
  import cv2
5
  import sys
6
  import torch
7
 
 
8
  device = 'gpu' if torch.cuda.is_available() else 'cpu'
 
 
9
 
10
  ocr = MMOCRInferencer(det='model/det/config.py',
11
  det_weights='model/det/model.pth',
 
1
  from mmocr.apis import MMOCRInferencer
2
+ from mmdet.apis import init_detector, inference_detector
3
  import gradio as gr
4
  import cv2
5
  import sys
6
  import torch
7
 
8
+ print('Loading model...')
9
  device = 'gpu' if torch.cuda.is_available() else 'cpu'
10
+ table_det = init_detector('model/table-det/config.py',
11
+ 'model/table-det/model.pth', device=device)
12
 
13
  ocr = MMOCRInferencer(det='model/det/config.py',
14
  det_weights='model/det/model.pth',
model/det/20230224_051330.log DELETED
@@ -1,755 +0,0 @@
1
- 2023/02/24 05:13:32 - mmengine - INFO -
2
- ------------------------------------------------------------
3
- System environment:
4
- sys.platform: linux
5
- Python: 3.8.10 (default, Nov 14 2022, 12:59:47) [GCC 9.4.0]
6
- CUDA available: True
7
- numpy_random_seed: 1569491978
8
- GPU 0: Tesla T4
9
- CUDA_HOME: /usr/local/cuda
10
- NVCC: Cuda compilation tools, release 11.6, V11.6.124
11
- GCC: x86_64-linux-gnu-gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
12
- PyTorch: 1.13.1+cu116
13
- PyTorch compiling details: PyTorch built with:
14
- - GCC 9.3
15
- - C++ Version: 201402
16
- - Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications
17
- - Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)
18
- - OpenMP 201511 (a.k.a. OpenMP 4.5)
19
- - LAPACK is enabled (usually provided by MKL)
20
- - NNPACK is enabled
21
- - CPU capability usage: AVX2
22
- - CUDA Runtime 11.6
23
- - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86
24
- - CuDNN 8.3.2 (built against CUDA 11.5)
25
- - Magma 2.6.1
26
- - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.6, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
27
-
28
- TorchVision: 0.14.1+cu116
29
- OpenCV: 4.6.0
30
- MMEngine: 0.5.0
31
-
32
- Runtime environment:
33
- cudnn_benchmark: True
34
- mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0}
35
- dist_cfg: {'backend': 'nccl'}
36
- seed: None
37
- Distributed launcher: none
38
- Distributed training: False
39
- GPU number: 1
40
- ------------------------------------------------------------
41
-
42
- 2023/02/24 05:13:33 - mmengine - INFO - Config:
43
- file_client_args = dict(backend='disk')
44
- model = dict(
45
- type='DBNet',
46
- backbone=dict(
47
- type='mmdet.ResNet',
48
- depth=18,
49
- num_stages=4,
50
- out_indices=(0, 1, 2, 3),
51
- frozen_stages=-1,
52
- norm_cfg=dict(type='BN', requires_grad=True),
53
- init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18'),
54
- norm_eval=False,
55
- style='caffe'),
56
- neck=dict(
57
- type='FPNC', in_channels=[64, 128, 256, 512], lateral_channels=256),
58
- det_head=dict(
59
- type='DBHead',
60
- in_channels=256,
61
- module_loss=dict(type='DBModuleLoss'),
62
- postprocessor=dict(type='DBPostprocessor', text_repr_type='quad')),
63
- data_preprocessor=dict(
64
- type='TextDetDataPreprocessor',
65
- mean=[123.675, 116.28, 103.53],
66
- std=[58.395, 57.12, 57.375],
67
- bgr_to_rgb=True,
68
- pad_size_divisor=32))
69
- train_pipeline = [
70
- dict(
71
- type='LoadImageFromFile',
72
- file_client_args=dict(backend='disk'),
73
- color_type='color_ignore_orientation'),
74
- dict(
75
- type='LoadOCRAnnotations',
76
- with_polygon=True,
77
- with_bbox=True,
78
- with_label=True),
79
- dict(
80
- type='TorchVisionWrapper',
81
- op='ColorJitter',
82
- brightness=0.12549019607843137,
83
- saturation=0.5),
84
- dict(
85
- type='ImgAugWrapper',
86
- args=[['Fliplr', 0.5], {
87
- 'cls': 'Affine',
88
- 'rotate': [-10, 10]
89
- }, ['Resize', [0.5, 3.0]]]),
90
- dict(type='RandomCrop', min_side_ratio=0.1),
91
- dict(type='Resize', scale=(640, 640), keep_ratio=True),
92
- dict(type='Pad', size=(640, 640)),
93
- dict(
94
- type='PackTextDetInputs',
95
- meta_keys=('img_path', 'ori_shape', 'img_shape'))
96
- ]
97
- test_pipeline = [
98
- dict(
99
- type='LoadImageFromFile',
100
- file_client_args=dict(backend='disk'),
101
- color_type='color_ignore_orientation'),
102
- dict(type='Resize', scale=(1333, 736), keep_ratio=True),
103
- dict(
104
- type='LoadOCRAnnotations',
105
- with_polygon=True,
106
- with_bbox=True,
107
- with_label=True),
108
- dict(
109
- type='PackTextDetInputs',
110
- meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor'))
111
- ]
112
- icdar2015_textdet_data_root = 'data/det/textdet-thvote'
113
- icdar2015_textdet_train = dict(
114
- type='OCRDataset',
115
- data_root='data/det/textdet-thvote',
116
- ann_file='textdet_train.json',
117
- data_prefix=dict(img_path='imgs/'),
118
- filter_cfg=dict(filter_empty_gt=True, min_size=32),
119
- pipeline=[
120
- dict(
121
- type='LoadImageFromFile',
122
- file_client_args=dict(backend='disk'),
123
- color_type='color_ignore_orientation'),
124
- dict(
125
- type='LoadOCRAnnotations',
126
- with_polygon=True,
127
- with_bbox=True,
128
- with_label=True),
129
- dict(
130
- type='TorchVisionWrapper',
131
- op='ColorJitter',
132
- brightness=0.12549019607843137,
133
- saturation=0.5),
134
- dict(
135
- type='ImgAugWrapper',
136
- args=[['Fliplr', 0.5], {
137
- 'cls': 'Affine',
138
- 'rotate': [-10, 10]
139
- }, ['Resize', [0.5, 3.0]]]),
140
- dict(type='RandomCrop', min_side_ratio=0.1),
141
- dict(type='Resize', scale=(640, 640), keep_ratio=True),
142
- dict(type='Pad', size=(640, 640)),
143
- dict(
144
- type='PackTextDetInputs',
145
- meta_keys=('img_path', 'ori_shape', 'img_shape'))
146
- ])
147
- icdar2015_textdet_test = dict(
148
- type='OCRDataset',
149
- data_root='data/det/textdet-thvote',
150
- ann_file='textdet_test.json',
151
- data_prefix=dict(img_path='imgs/'),
152
- test_mode=True,
153
- pipeline=[
154
- dict(
155
- type='LoadImageFromFile',
156
- file_client_args=dict(backend='disk'),
157
- color_type='color_ignore_orientation'),
158
- dict(type='Resize', scale=(1333, 736), keep_ratio=True),
159
- dict(
160
- type='LoadOCRAnnotations',
161
- with_polygon=True,
162
- with_bbox=True,
163
- with_label=True),
164
- dict(
165
- type='PackTextDetInputs',
166
- meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor'))
167
- ])
168
- default_scope = 'mmocr'
169
- env_cfg = dict(
170
- cudnn_benchmark=True,
171
- mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
172
- dist_cfg=dict(backend='nccl'))
173
- randomness = dict(seed=None)
174
- default_hooks = dict(
175
- timer=dict(type='IterTimerHook'),
176
- logger=dict(type='LoggerHook', interval=5),
177
- param_scheduler=dict(type='ParamSchedulerHook'),
178
- checkpoint=dict(type='CheckpointHook', interval=20),
179
- sampler_seed=dict(type='DistSamplerSeedHook'),
180
- sync_buffer=dict(type='SyncBuffersHook'),
181
- visualization=dict(
182
- type='VisualizationHook',
183
- interval=1,
184
- enable=False,
185
- show=False,
186
- draw_gt=False,
187
- draw_pred=False))
188
- log_level = 'INFO'
189
- log_processor = dict(type='LogProcessor', window_size=10, by_epoch=True)
190
- load_from = None
191
- resume = False
192
- val_evaluator = dict(type='HmeanIOUMetric')
193
- test_evaluator = dict(type='HmeanIOUMetric')
194
- vis_backends = [dict(type='LocalVisBackend')]
195
- visualizer = dict(
196
- type='TextDetLocalVisualizer',
197
- name='visualizer',
198
- vis_backends=[dict(type='LocalVisBackend')])
199
- optim_wrapper = dict(
200
- type='OptimWrapper',
201
- optimizer=dict(type='SGD', lr=0.007, momentum=0.9, weight_decay=0.0001))
202
- train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=1200, val_interval=20)
203
- val_cfg = dict(type='ValLoop')
204
- test_cfg = dict(type='TestLoop')
205
- param_scheduler = [dict(type='PolyLR', power=0.9, eta_min=1e-07, end=1200)]
206
- train_dataloader = dict(
207
- batch_size=16,
208
- num_workers=8,
209
- persistent_workers=True,
210
- sampler=dict(type='DefaultSampler', shuffle=True),
211
- dataset=dict(
212
- type='OCRDataset',
213
- data_root='data/det/textdet-thvote',
214
- ann_file='textdet_train.json',
215
- data_prefix=dict(img_path='imgs/'),
216
- filter_cfg=dict(filter_empty_gt=True, min_size=32),
217
- pipeline=[
218
- dict(
219
- type='LoadImageFromFile',
220
- file_client_args=dict(backend='disk'),
221
- color_type='color_ignore_orientation'),
222
- dict(
223
- type='LoadOCRAnnotations',
224
- with_polygon=True,
225
- with_bbox=True,
226
- with_label=True),
227
- dict(
228
- type='TorchVisionWrapper',
229
- op='ColorJitter',
230
- brightness=0.12549019607843137,
231
- saturation=0.5),
232
- dict(
233
- type='ImgAugWrapper',
234
- args=[['Fliplr', 0.5], {
235
- 'cls': 'Affine',
236
- 'rotate': [-10, 10]
237
- }, ['Resize', [0.5, 3.0]]]),
238
- dict(type='RandomCrop', min_side_ratio=0.1),
239
- dict(type='Resize', scale=(640, 640), keep_ratio=True),
240
- dict(type='Pad', size=(640, 640)),
241
- dict(
242
- type='PackTextDetInputs',
243
- meta_keys=('img_path', 'ori_shape', 'img_shape'))
244
- ]))
245
- val_dataloader = dict(
246
- batch_size=1,
247
- num_workers=4,
248
- persistent_workers=True,
249
- sampler=dict(type='DefaultSampler', shuffle=False),
250
- dataset=dict(
251
- type='OCRDataset',
252
- data_root='data/det/textdet-thvote',
253
- ann_file='textdet_test.json',
254
- data_prefix=dict(img_path='imgs/'),
255
- test_mode=True,
256
- pipeline=[
257
- dict(
258
- type='LoadImageFromFile',
259
- file_client_args=dict(backend='disk'),
260
- color_type='color_ignore_orientation'),
261
- dict(type='Resize', scale=(1333, 736), keep_ratio=True),
262
- dict(
263
- type='LoadOCRAnnotations',
264
- with_polygon=True,
265
- with_bbox=True,
266
- with_label=True),
267
- dict(
268
- type='PackTextDetInputs',
269
- meta_keys=('img_path', 'ori_shape', 'img_shape',
270
- 'scale_factor'))
271
- ]))
272
- test_dataloader = dict(
273
- batch_size=1,
274
- num_workers=4,
275
- persistent_workers=True,
276
- sampler=dict(type='DefaultSampler', shuffle=False),
277
- dataset=dict(
278
- type='OCRDataset',
279
- data_root='data/det/textdet-thvote',
280
- ann_file='textdet_test.json',
281
- data_prefix=dict(img_path='imgs/'),
282
- test_mode=True,
283
- pipeline=[
284
- dict(
285
- type='LoadImageFromFile',
286
- file_client_args=dict(backend='disk'),
287
- color_type='color_ignore_orientation'),
288
- dict(type='Resize', scale=(1333, 736), keep_ratio=True),
289
- dict(
290
- type='LoadOCRAnnotations',
291
- with_polygon=True,
292
- with_bbox=True,
293
- with_label=True),
294
- dict(
295
- type='PackTextDetInputs',
296
- meta_keys=('img_path', 'ori_shape', 'img_shape',
297
- 'scale_factor'))
298
- ]))
299
- auto_scale_lr = dict(base_batch_size=16)
300
- launcher = 'none'
301
- work_dir = './work_dirs/dbnet_resnet18_fpnc_1200e_icdar2015'
302
-
303
- 2023/02/24 05:13:33 - mmengine - WARNING - The "visualizer" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
304
- 2023/02/24 05:13:33 - mmengine - WARNING - The "vis_backend" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
305
- 2023/02/24 05:13:34 - mmengine - WARNING - The "model" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
306
- 2023/02/24 05:13:34 - mmengine - WARNING - The "model" registry in mmdet did not set import location. Fallback to call `mmdet.utils.register_all_modules` instead.
307
- 2023/02/24 05:13:38 - mmengine - INFO - Distributed training is not used, all SyncBatchNorm (SyncBN) layers in the model will be automatically reverted to BatchNormXd layers if they are used.
308
- 2023/02/24 05:13:38 - mmengine - WARNING - The "hook" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
309
- 2023/02/24 05:13:38 - mmengine - INFO - Hooks will be executed in the following order:
310
- before_run:
311
- (VERY_HIGH ) RuntimeInfoHook
312
- (BELOW_NORMAL) LoggerHook
313
- --------------------
314
- before_train:
315
- (VERY_HIGH ) RuntimeInfoHook
316
- (NORMAL ) IterTimerHook
317
- (VERY_LOW ) CheckpointHook
318
- --------------------
319
- before_train_epoch:
320
- (VERY_HIGH ) RuntimeInfoHook
321
- (NORMAL ) IterTimerHook
322
- (NORMAL ) DistSamplerSeedHook
323
- --------------------
324
- before_train_iter:
325
- (VERY_HIGH ) RuntimeInfoHook
326
- (NORMAL ) IterTimerHook
327
- --------------------
328
- after_train_iter:
329
- (VERY_HIGH ) RuntimeInfoHook
330
- (NORMAL ) IterTimerHook
331
- (BELOW_NORMAL) LoggerHook
332
- (LOW ) ParamSchedulerHook
333
- (VERY_LOW ) CheckpointHook
334
- --------------------
335
- after_train_epoch:
336
- (NORMAL ) IterTimerHook
337
- (NORMAL ) SyncBuffersHook
338
- (LOW ) ParamSchedulerHook
339
- (VERY_LOW ) CheckpointHook
340
- --------------------
341
- before_val_epoch:
342
- (NORMAL ) IterTimerHook
343
- --------------------
344
- before_val_iter:
345
- (NORMAL ) IterTimerHook
346
- --------------------
347
- after_val_iter:
348
- (NORMAL ) IterTimerHook
349
- (NORMAL ) VisualizationHook
350
- (BELOW_NORMAL) LoggerHook
351
- --------------------
352
- after_val_epoch:
353
- (VERY_HIGH ) RuntimeInfoHook
354
- (NORMAL ) IterTimerHook
355
- (BELOW_NORMAL) LoggerHook
356
- (LOW ) ParamSchedulerHook
357
- (VERY_LOW ) CheckpointHook
358
- --------------------
359
- before_test_epoch:
360
- (NORMAL ) IterTimerHook
361
- --------------------
362
- before_test_iter:
363
- (NORMAL ) IterTimerHook
364
- --------------------
365
- after_test_iter:
366
- (NORMAL ) IterTimerHook
367
- (NORMAL ) VisualizationHook
368
- (BELOW_NORMAL) LoggerHook
369
- --------------------
370
- after_test_epoch:
371
- (VERY_HIGH ) RuntimeInfoHook
372
- (NORMAL ) IterTimerHook
373
- (BELOW_NORMAL) LoggerHook
374
- --------------------
375
- after_run:
376
- (BELOW_NORMAL) LoggerHook
377
- --------------------
378
- 2023/02/24 05:13:39 - mmengine - WARNING - The "loop" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
379
- 2023/02/24 05:13:39 - mmengine - WARNING - The "dataset" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
380
- 2023/02/24 05:13:39 - mmengine - WARNING - The "transform" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
381
- 2023/02/24 05:13:39 - mmengine - WARNING - The "data sampler" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
382
- 2023/02/24 05:13:39 - mmengine - WARNING - The "optimizer constructor" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
383
- 2023/02/24 05:13:39 - mmengine - WARNING - The "optimizer" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
384
- 2023/02/24 05:13:39 - mmengine - WARNING - The "optim wrapper" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
385
- 2023/02/24 05:13:39 - mmengine - WARNING - The "parameter scheduler" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
386
- 2023/02/24 05:13:40 - mmengine - WARNING - The "metric" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
387
- 2023/02/24 05:13:40 - mmengine - WARNING - The "weight initializer" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
388
- 2023/02/24 05:13:40 - mmengine - INFO - load model from: torchvision://resnet18
389
- 2023/02/24 05:13:40 - mmengine - INFO - Loads checkpoint by torchvision backend from path: torchvision://resnet18
390
- 2023/02/24 05:13:40 - mmengine - WARNING - The model and loaded state dict do not match exactly
391
-
392
- unexpected key in source state_dict: fc.weight, fc.bias
393
-
394
- Name of parameter - Initialization information
395
-
396
- backbone.conv1.weight - torch.Size([64, 3, 7, 7]):
397
- PretrainedInit: load from torchvision://resnet18
398
-
399
- backbone.bn1.weight - torch.Size([64]):
400
- PretrainedInit: load from torchvision://resnet18
401
-
402
- backbone.bn1.bias - torch.Size([64]):
403
- PretrainedInit: load from torchvision://resnet18
404
-
405
- backbone.layer1.0.conv1.weight - torch.Size([64, 64, 3, 3]):
406
- PretrainedInit: load from torchvision://resnet18
407
-
408
- backbone.layer1.0.bn1.weight - torch.Size([64]):
409
- PretrainedInit: load from torchvision://resnet18
410
-
411
- backbone.layer1.0.bn1.bias - torch.Size([64]):
412
- PretrainedInit: load from torchvision://resnet18
413
-
414
- backbone.layer1.0.conv2.weight - torch.Size([64, 64, 3, 3]):
415
- PretrainedInit: load from torchvision://resnet18
416
-
417
- backbone.layer1.0.bn2.weight - torch.Size([64]):
418
- PretrainedInit: load from torchvision://resnet18
419
-
420
- backbone.layer1.0.bn2.bias - torch.Size([64]):
421
- PretrainedInit: load from torchvision://resnet18
422
-
423
- backbone.layer1.1.conv1.weight - torch.Size([64, 64, 3, 3]):
424
- PretrainedInit: load from torchvision://resnet18
425
-
426
- backbone.layer1.1.bn1.weight - torch.Size([64]):
427
- PretrainedInit: load from torchvision://resnet18
428
-
429
- backbone.layer1.1.bn1.bias - torch.Size([64]):
430
- PretrainedInit: load from torchvision://resnet18
431
-
432
- backbone.layer1.1.conv2.weight - torch.Size([64, 64, 3, 3]):
433
- PretrainedInit: load from torchvision://resnet18
434
-
435
- backbone.layer1.1.bn2.weight - torch.Size([64]):
436
- PretrainedInit: load from torchvision://resnet18
437
-
438
- backbone.layer1.1.bn2.bias - torch.Size([64]):
439
- PretrainedInit: load from torchvision://resnet18
440
-
441
- backbone.layer2.0.conv1.weight - torch.Size([128, 64, 3, 3]):
442
- PretrainedInit: load from torchvision://resnet18
443
-
444
- backbone.layer2.0.bn1.weight - torch.Size([128]):
445
- PretrainedInit: load from torchvision://resnet18
446
-
447
- backbone.layer2.0.bn1.bias - torch.Size([128]):
448
- PretrainedInit: load from torchvision://resnet18
449
-
450
- backbone.layer2.0.conv2.weight - torch.Size([128, 128, 3, 3]):
451
- PretrainedInit: load from torchvision://resnet18
452
-
453
- backbone.layer2.0.bn2.weight - torch.Size([128]):
454
- PretrainedInit: load from torchvision://resnet18
455
-
456
- backbone.layer2.0.bn2.bias - torch.Size([128]):
457
- PretrainedInit: load from torchvision://resnet18
458
-
459
- backbone.layer2.0.downsample.0.weight - torch.Size([128, 64, 1, 1]):
460
- PretrainedInit: load from torchvision://resnet18
461
-
462
- backbone.layer2.0.downsample.1.weight - torch.Size([128]):
463
- PretrainedInit: load from torchvision://resnet18
464
-
465
- backbone.layer2.0.downsample.1.bias - torch.Size([128]):
466
- PretrainedInit: load from torchvision://resnet18
467
-
468
- backbone.layer2.1.conv1.weight - torch.Size([128, 128, 3, 3]):
469
- PretrainedInit: load from torchvision://resnet18
470
-
471
- backbone.layer2.1.bn1.weight - torch.Size([128]):
472
- PretrainedInit: load from torchvision://resnet18
473
-
474
- backbone.layer2.1.bn1.bias - torch.Size([128]):
475
- PretrainedInit: load from torchvision://resnet18
476
-
477
- backbone.layer2.1.conv2.weight - torch.Size([128, 128, 3, 3]):
478
- PretrainedInit: load from torchvision://resnet18
479
-
480
- backbone.layer2.1.bn2.weight - torch.Size([128]):
481
- PretrainedInit: load from torchvision://resnet18
482
-
483
- backbone.layer2.1.bn2.bias - torch.Size([128]):
484
- PretrainedInit: load from torchvision://resnet18
485
-
486
- backbone.layer3.0.conv1.weight - torch.Size([256, 128, 3, 3]):
487
- PretrainedInit: load from torchvision://resnet18
488
-
489
- backbone.layer3.0.bn1.weight - torch.Size([256]):
490
- PretrainedInit: load from torchvision://resnet18
491
-
492
- backbone.layer3.0.bn1.bias - torch.Size([256]):
493
- PretrainedInit: load from torchvision://resnet18
494
-
495
- backbone.layer3.0.conv2.weight - torch.Size([256, 256, 3, 3]):
496
- PretrainedInit: load from torchvision://resnet18
497
-
498
- backbone.layer3.0.bn2.weight - torch.Size([256]):
499
- PretrainedInit: load from torchvision://resnet18
500
-
501
- backbone.layer3.0.bn2.bias - torch.Size([256]):
502
- PretrainedInit: load from torchvision://resnet18
503
-
504
- backbone.layer3.0.downsample.0.weight - torch.Size([256, 128, 1, 1]):
505
- PretrainedInit: load from torchvision://resnet18
506
-
507
- backbone.layer3.0.downsample.1.weight - torch.Size([256]):
508
- PretrainedInit: load from torchvision://resnet18
509
-
510
- backbone.layer3.0.downsample.1.bias - torch.Size([256]):
511
- PretrainedInit: load from torchvision://resnet18
512
-
513
- backbone.layer3.1.conv1.weight - torch.Size([256, 256, 3, 3]):
514
- PretrainedInit: load from torchvision://resnet18
515
-
516
- backbone.layer3.1.bn1.weight - torch.Size([256]):
517
- PretrainedInit: load from torchvision://resnet18
518
-
519
- backbone.layer3.1.bn1.bias - torch.Size([256]):
520
- PretrainedInit: load from torchvision://resnet18
521
-
522
- backbone.layer3.1.conv2.weight - torch.Size([256, 256, 3, 3]):
523
- PretrainedInit: load from torchvision://resnet18
524
-
525
- backbone.layer3.1.bn2.weight - torch.Size([256]):
526
- PretrainedInit: load from torchvision://resnet18
527
-
528
- backbone.layer3.1.bn2.bias - torch.Size([256]):
529
- PretrainedInit: load from torchvision://resnet18
530
-
531
- backbone.layer4.0.conv1.weight - torch.Size([512, 256, 3, 3]):
532
- PretrainedInit: load from torchvision://resnet18
533
-
534
- backbone.layer4.0.bn1.weight - torch.Size([512]):
535
- PretrainedInit: load from torchvision://resnet18
536
-
537
- backbone.layer4.0.bn1.bias - torch.Size([512]):
538
- PretrainedInit: load from torchvision://resnet18
539
-
540
- backbone.layer4.0.conv2.weight - torch.Size([512, 512, 3, 3]):
541
- PretrainedInit: load from torchvision://resnet18
542
-
543
- backbone.layer4.0.bn2.weight - torch.Size([512]):
544
- PretrainedInit: load from torchvision://resnet18
545
-
546
- backbone.layer4.0.bn2.bias - torch.Size([512]):
547
- PretrainedInit: load from torchvision://resnet18
548
-
549
- backbone.layer4.0.downsample.0.weight - torch.Size([512, 256, 1, 1]):
550
- PretrainedInit: load from torchvision://resnet18
551
-
552
- backbone.layer4.0.downsample.1.weight - torch.Size([512]):
553
- PretrainedInit: load from torchvision://resnet18
554
-
555
- backbone.layer4.0.downsample.1.bias - torch.Size([512]):
556
- PretrainedInit: load from torchvision://resnet18
557
-
558
- backbone.layer4.1.conv1.weight - torch.Size([512, 512, 3, 3]):
559
- PretrainedInit: load from torchvision://resnet18
560
-
561
- backbone.layer4.1.bn1.weight - torch.Size([512]):
562
- PretrainedInit: load from torchvision://resnet18
563
-
564
- backbone.layer4.1.bn1.bias - torch.Size([512]):
565
- PretrainedInit: load from torchvision://resnet18
566
-
567
- backbone.layer4.1.conv2.weight - torch.Size([512, 512, 3, 3]):
568
- PretrainedInit: load from torchvision://resnet18
569
-
570
- backbone.layer4.1.bn2.weight - torch.Size([512]):
571
- PretrainedInit: load from torchvision://resnet18
572
-
573
- backbone.layer4.1.bn2.bias - torch.Size([512]):
574
- PretrainedInit: load from torchvision://resnet18
575
-
576
- neck.lateral_convs.0.conv.weight - torch.Size([256, 64, 1, 1]):
577
- Initialized by user-defined `init_weights` in ConvModule
578
-
579
- neck.lateral_convs.1.conv.weight - torch.Size([256, 128, 1, 1]):
580
- Initialized by user-defined `init_weights` in ConvModule
581
-
582
- neck.lateral_convs.2.conv.weight - torch.Size([256, 256, 1, 1]):
583
- Initialized by user-defined `init_weights` in ConvModule
584
-
585
- neck.lateral_convs.3.conv.weight - torch.Size([256, 512, 1, 1]):
586
- Initialized by user-defined `init_weights` in ConvModule
587
-
588
- neck.smooth_convs.0.conv.weight - torch.Size([64, 256, 3, 3]):
589
- Initialized by user-defined `init_weights` in ConvModule
590
-
591
- neck.smooth_convs.1.conv.weight - torch.Size([64, 256, 3, 3]):
592
- Initialized by user-defined `init_weights` in ConvModule
593
-
594
- neck.smooth_convs.2.conv.weight - torch.Size([64, 256, 3, 3]):
595
- Initialized by user-defined `init_weights` in ConvModule
596
-
597
- neck.smooth_convs.3.conv.weight - torch.Size([64, 256, 3, 3]):
598
- Initialized by user-defined `init_weights` in ConvModule
599
-
600
- det_head.binarize.0.weight - torch.Size([64, 256, 3, 3]):
601
- The value is the same before and after calling `init_weights` of DBNet
602
-
603
- det_head.binarize.1.weight - torch.Size([64]):
604
- The value is the same before and after calling `init_weights` of DBNet
605
-
606
- det_head.binarize.1.bias - torch.Size([64]):
607
- The value is the same before and after calling `init_weights` of DBNet
608
-
609
- det_head.binarize.3.weight - torch.Size([64, 64, 2, 2]):
610
- The value is the same before and after calling `init_weights` of DBNet
611
-
612
- det_head.binarize.3.bias - torch.Size([64]):
613
- The value is the same before and after calling `init_weights` of DBNet
614
-
615
- det_head.binarize.4.weight - torch.Size([64]):
616
- The value is the same before and after calling `init_weights` of DBNet
617
-
618
- det_head.binarize.4.bias - torch.Size([64]):
619
- The value is the same before and after calling `init_weights` of DBNet
620
-
621
- det_head.binarize.6.weight - torch.Size([64, 1, 2, 2]):
622
- The value is the same before and after calling `init_weights` of DBNet
623
-
624
- det_head.binarize.6.bias - torch.Size([1]):
625
- The value is the same before and after calling `init_weights` of DBNet
626
-
627
- det_head.threshold.0.weight - torch.Size([64, 256, 3, 3]):
628
- The value is the same before and after calling `init_weights` of DBNet
629
-
630
- det_head.threshold.1.weight - torch.Size([64]):
631
- The value is the same before and after calling `init_weights` of DBNet
632
-
633
- det_head.threshold.1.bias - torch.Size([64]):
634
- The value is the same before and after calling `init_weights` of DBNet
635
-
636
- det_head.threshold.3.weight - torch.Size([64, 64, 2, 2]):
637
- The value is the same before and after calling `init_weights` of DBNet
638
-
639
- det_head.threshold.3.bias - torch.Size([64]):
640
- The value is the same before and after calling `init_weights` of DBNet
641
-
642
- det_head.threshold.4.weight - torch.Size([64]):
643
- The value is the same before and after calling `init_weights` of DBNet
644
-
645
- det_head.threshold.4.bias - torch.Size([64]):
646
- The value is the same before and after calling `init_weights` of DBNet
647
-
648
- det_head.threshold.6.weight - torch.Size([64, 1, 2, 2]):
649
- The value is the same before and after calling `init_weights` of DBNet
650
-
651
- det_head.threshold.6.bias - torch.Size([1]):
652
- The value is the same before and after calling `init_weights` of DBNet
653
- 2023/02/24 05:13:40 - mmengine - INFO - Checkpoints will be saved to /content/mmocr/work_dirs/dbnet_resnet18_fpnc_1200e_icdar2015.
654
- 2023/02/24 05:16:48 - mmengine - INFO - Epoch(train) [1][ 5/22] lr: 7.0000e-03 eta: 11 days, 10:56:37 time: 37.4994 data_time: 13.3666 memory: 12058 loss: 10.5798 loss_prob: 7.3334 loss_thr: 2.3504 loss_db: 0.8960
655
- 2023/02/24 05:17:25 - mmengine - INFO - Epoch(train) [1][10/22] lr: 7.0000e-03 eta: 6 days, 20:37:40 time: 22.4578 data_time: 6.7581 memory: 6713 loss: 8.0422 loss_prob: 5.2998 loss_thr: 1.8354 loss_db: 0.9071
656
- 2023/02/24 05:17:49 - mmengine - INFO - Epoch(train) [1][15/22] lr: 7.0000e-03 eta: 5 days, 1:36:06 time: 6.1375 data_time: 0.0814 memory: 6713 loss: 5.2709 loss_prob: 3.0675 loss_thr: 1.2472 loss_db: 0.9562
657
- 2023/02/24 05:18:13 - mmengine - INFO - Epoch(train) [1][20/22] lr: 7.0000e-03 eta: 4 days, 3:52:43 time: 4.8026 data_time: 0.0312 memory: 6713 loss: 4.9844 loss_prob: 2.8490 loss_thr: 1.1389 loss_db: 0.9965
658
- 2023/02/24 05:18:25 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
659
- 2023/02/24 05:21:34 - mmengine - INFO - Epoch(train) [2][ 5/22] lr: 6.9947e-03 eta: 5 days, 8:31:25 time: 21.5618 data_time: 7.1003 memory: 11447 loss: 4.8425 loss_prob: 2.8106 loss_thr: 1.0607 loss_db: 0.9712
660
- 2023/02/24 05:22:09 - mmengine - INFO - Epoch(train) [2][10/22] lr: 6.9947e-03 eta: 4 days, 20:24:29 time: 22.4338 data_time: 7.1646 memory: 6712 loss: 4.7001 loss_prob: 2.7874 loss_thr: 1.1015 loss_db: 0.8112
661
- 2023/02/24 05:22:33 - mmengine - INFO - Epoch(train) [2][15/22] lr: 6.9947e-03 eta: 4 days, 9:30:51 time: 5.9429 data_time: 0.0877 memory: 6712 loss: 4.4307 loss_prob: 2.7478 loss_thr: 1.1405 loss_db: 0.5424
662
- 2023/02/24 05:22:56 - mmengine - INFO - Epoch(train) [2][20/22] lr: 6.9947e-03 eta: 4 days, 0:51:26 time: 4.7033 data_time: 0.0489 memory: 6712 loss: 4.1205 loss_prob: 2.6747 loss_thr: 1.0579 loss_db: 0.3879
663
- 2023/02/24 05:23:05 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
664
- 2023/02/24 05:25:58 - mmengine - INFO - Epoch(train) [3][ 5/22] lr: 6.9895e-03 eta: 4 days, 14:13:27 time: 19.7292 data_time: 6.3200 memory: 6712 loss: 3.7028 loss_prob: 2.4246 loss_thr: 0.9721 loss_db: 0.3061
665
- 2023/02/24 05:26:33 - mmengine - INFO - Epoch(train) [3][10/22] lr: 6.9895e-03 eta: 4 days, 8:44:41 time: 20.8299 data_time: 6.3501 memory: 6712 loss: 3.4052 loss_prob: 2.1909 loss_thr: 0.9435 loss_db: 0.2709
666
- 2023/02/24 05:26:53 - mmengine - INFO - Epoch(train) [3][15/22] lr: 6.9895e-03 eta: 4 days, 2:14:03 time: 5.4242 data_time: 0.0758 memory: 6712 loss: 3.1914 loss_prob: 2.0126 loss_thr: 0.9125 loss_db: 0.2664
667
- 2023/02/24 05:27:15 - mmengine - INFO - Epoch(train) [3][20/22] lr: 6.9895e-03 eta: 3 days, 21:04:03 time: 4.1317 data_time: 0.0486 memory: 6712 loss: 2.9899 loss_prob: 1.8336 loss_thr: 0.8950 loss_db: 0.2613
668
- 2023/02/24 05:27:23 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
669
- 2023/02/24 05:30:21 - mmengine - INFO - Epoch(train) [4][ 5/22] lr: 6.9842e-03 eta: 4 days, 7:06:23 time: 19.9728 data_time: 6.5625 memory: 6712 loss: 2.7135 loss_prob: 1.6040 loss_thr: 0.8757 loss_db: 0.2338
670
- 2023/02/24 05:30:55 - mmengine - INFO - Epoch(train) [4][10/22] lr: 6.9842e-03 eta: 4 days, 3:31:24 time: 21.1335 data_time: 6.5916 memory: 6712 loss: 2.5669 loss_prob: 1.4807 loss_thr: 0.8647 loss_db: 0.2215
671
- 2023/02/24 05:31:16 - mmengine - INFO - Epoch(train) [4][15/22] lr: 6.9842e-03 eta: 3 days, 23:16:49 time: 5.4703 data_time: 0.0655 memory: 6712 loss: 2.5318 loss_prob: 1.4490 loss_thr: 0.8641 loss_db: 0.2187
672
- 2023/02/24 05:31:37 - mmengine - INFO - Epoch(train) [4][20/22] lr: 6.9842e-03 eta: 3 days, 19:28:30 time: 4.1855 data_time: 0.0463 memory: 6712 loss: 2.4536 loss_prob: 1.3779 loss_thr: 0.8595 loss_db: 0.2161
673
- 2023/02/24 05:31:43 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
674
- 2023/02/24 05:34:41 - mmengine - INFO - Epoch(train) [5][ 5/22] lr: 6.9790e-03 eta: 4 days, 3:03:02 time: 19.6819 data_time: 6.5648 memory: 6712 loss: 2.2837 loss_prob: 1.2531 loss_thr: 0.8280 loss_db: 0.2027
675
- 2023/02/24 05:35:13 - mmengine - INFO - Epoch(train) [5][10/22] lr: 6.9790e-03 eta: 4 days, 0:23:14 time: 20.9855 data_time: 6.6279 memory: 6712 loss: 2.2122 loss_prob: 1.1990 loss_thr: 0.8168 loss_db: 0.1964
676
- 2023/02/24 05:35:36 - mmengine - INFO - Epoch(train) [5][15/22] lr: 6.9790e-03 eta: 3 days, 21:16:29 time: 5.4636 data_time: 0.0946 memory: 6712 loss: 2.1482 loss_prob: 1.1455 loss_thr: 0.8120 loss_db: 0.1906
677
- 2023/02/24 05:35:57 - mmengine - INFO - Epoch(train) [5][20/22] lr: 6.9790e-03 eta: 3 days, 18:24:00 time: 4.3929 data_time: 0.0363 memory: 6712 loss: 2.2215 loss_prob: 1.2052 loss_thr: 0.8195 loss_db: 0.1968
678
- 2023/02/24 05:36:05 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
679
- 2023/02/24 05:39:01 - mmengine - INFO - Epoch(train) [6][ 5/22] lr: 6.9737e-03 eta: 4 days, 0:33:26 time: 19.8343 data_time: 6.6865 memory: 6712 loss: 2.2092 loss_prob: 1.1873 loss_thr: 0.8270 loss_db: 0.1949
680
- 2023/02/24 05:39:35 - mmengine - INFO - Epoch(train) [6][10/22] lr: 6.9737e-03 eta: 3 days, 22:34:41 time: 21.0220 data_time: 6.7316 memory: 6712 loss: 2.0882 loss_prob: 1.0934 loss_thr: 0.8093 loss_db: 0.1856
681
- 2023/02/24 05:39:55 - mmengine - INFO - Epoch(train) [6][15/22] lr: 6.9737e-03 eta: 3 days, 19:56:56 time: 5.3949 data_time: 0.0639 memory: 6712 loss: 2.0953 loss_prob: 1.1014 loss_thr: 0.8072 loss_db: 0.1867
682
- 2023/02/24 05:40:15 - mmengine - INFO - Epoch(train) [6][20/22] lr: 6.9737e-03 eta: 3 days, 17:30:13 time: 3.9802 data_time: 0.0307 memory: 6712 loss: 2.1803 loss_prob: 1.1807 loss_thr: 0.8064 loss_db: 0.1932
683
- 2023/02/24 05:40:24 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
684
- 2023/02/24 05:43:18 - mmengine - INFO - Epoch(train) [7][ 5/22] lr: 6.9685e-03 eta: 3 days, 22:38:09 time: 19.3378 data_time: 6.0656 memory: 6712 loss: 2.1125 loss_prob: 1.1454 loss_thr: 0.7801 loss_db: 0.1870
685
- 2023/02/24 05:43:52 - mmengine - INFO - Epoch(train) [7][10/22] lr: 6.9685e-03 eta: 3 days, 21:03:26 time: 20.8409 data_time: 6.1127 memory: 6712 loss: 2.1082 loss_prob: 1.1444 loss_thr: 0.7752 loss_db: 0.1886
686
- 2023/02/24 05:44:14 - mmengine - INFO - Epoch(train) [7][15/22] lr: 6.9685e-03 eta: 3 days, 18:57:55 time: 5.6460 data_time: 0.0896 memory: 6712 loss: 2.0828 loss_prob: 1.1309 loss_thr: 0.7652 loss_db: 0.1867
687
- 2023/02/24 05:44:35 - mmengine - INFO - Epoch(train) [7][20/22] lr: 6.9685e-03 eta: 3 days, 16:56:45 time: 4.2613 data_time: 0.0588 memory: 6712 loss: 1.9454 loss_prob: 1.0347 loss_thr: 0.7355 loss_db: 0.1752
688
- 2023/02/24 05:44:42 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
689
- 2023/02/24 05:47:42 - mmengine - INFO - Epoch(train) [8][ 5/22] lr: 6.9632e-03 eta: 3 days, 21:35:37 time: 20.0738 data_time: 7.0659 memory: 6712 loss: 1.9103 loss_prob: 1.0182 loss_thr: 0.7198 loss_db: 0.1723
690
- 2023/02/24 05:48:18 - mmengine - INFO - Epoch(train) [8][10/22] lr: 6.9632e-03 eta: 3 days, 20:19:25 time: 21.6464 data_time: 7.0947 memory: 6712 loss: 1.9593 loss_prob: 1.0665 loss_thr: 0.7176 loss_db: 0.1751
691
- 2023/02/24 05:48:41 - mmengine - INFO - Epoch(train) [8][15/22] lr: 6.9632e-03 eta: 3 days, 18:33:12 time: 5.8713 data_time: 0.0769 memory: 6712 loss: 1.9544 loss_prob: 1.0733 loss_thr: 0.7049 loss_db: 0.1762
692
- 2023/02/24 05:49:01 - mmengine - INFO - Epoch(train) [8][20/22] lr: 6.9632e-03 eta: 3 days, 16:48:01 time: 4.3373 data_time: 0.0467 memory: 6712 loss: 1.8306 loss_prob: 0.9863 loss_thr: 0.6770 loss_db: 0.1673
693
- 2023/02/24 05:49:08 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
694
- 2023/02/24 05:52:08 - mmengine - INFO - Epoch(train) [9][ 5/22] lr: 6.9580e-03 eta: 3 days, 20:51:50 time: 20.0004 data_time: 6.3228 memory: 6712 loss: 1.9089 loss_prob: 1.0586 loss_thr: 0.6772 loss_db: 0.1731
695
- 2023/02/24 05:52:41 - mmengine - INFO - Epoch(train) [9][10/22] lr: 6.9580e-03 eta: 3 days, 19:38:00 time: 21.3337 data_time: 6.3790 memory: 6712 loss: 1.8955 loss_prob: 1.0480 loss_thr: 0.6761 loss_db: 0.1714
696
- 2023/02/24 05:53:02 - mmengine - INFO - Epoch(train) [9][15/22] lr: 6.9580e-03 eta: 3 days, 17:59:55 time: 5.3263 data_time: 0.0722 memory: 6712 loss: 1.7788 loss_prob: 0.9520 loss_thr: 0.6654 loss_db: 0.1614
697
- 2023/02/24 05:53:21 - mmengine - INFO - Epoch(train) [9][20/22] lr: 6.9580e-03 eta: 3 days, 16:25:34 time: 4.0420 data_time: 0.0361 memory: 6712 loss: 1.8003 loss_prob: 0.9682 loss_thr: 0.6678 loss_db: 0.1643
698
- 2023/02/24 05:53:31 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
699
- 2023/02/24 05:56:27 - mmengine - INFO - Epoch(train) [10][ 5/22] lr: 6.9527e-03 eta: 3 days, 20:00:04 time: 19.6905 data_time: 6.3250 memory: 6712 loss: 1.8357 loss_prob: 0.9859 loss_thr: 0.6834 loss_db: 0.1663
700
- 2023/02/24 05:57:04 - mmengine - INFO - Epoch(train) [10][10/22] lr: 6.9527e-03 eta: 3 days, 19:04:40 time: 21.3082 data_time: 6.3498 memory: 6712 loss: 1.8376 loss_prob: 0.9889 loss_thr: 0.6809 loss_db: 0.1677
701
- 2023/02/24 05:57:27 - mmengine - INFO - Epoch(train) [10][15/22] lr: 6.9527e-03 eta: 3 days, 17:43:00 time: 6.0559 data_time: 0.0570 memory: 6712 loss: 1.7998 loss_prob: 0.9688 loss_thr: 0.6660 loss_db: 0.1651
702
- 2023/02/24 05:57:48 - mmengine - INFO - Epoch(train) [10][20/22] lr: 6.9527e-03 eta: 3 days, 16:20:24 time: 4.4162 data_time: 0.0306 memory: 6712 loss: 1.8812 loss_prob: 1.0357 loss_thr: 0.6779 loss_db: 0.1676
703
- 2023/02/24 05:57:55 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
704
- 2023/02/24 06:01:01 - mmengine - INFO - Epoch(train) [11][ 5/22] lr: 6.9474e-03 eta: 3 days, 19:46:57 time: 20.5701 data_time: 7.2858 memory: 6712 loss: 1.8385 loss_prob: 1.0164 loss_thr: 0.6580 loss_db: 0.1641
705
- 2023/02/24 06:01:42 - mmengine - INFO - Epoch(train) [11][10/22] lr: 6.9474e-03 eta: 3 days, 19:04:25 time: 22.6877 data_time: 7.3177 memory: 6712 loss: 1.7372 loss_prob: 0.9383 loss_thr: 0.6403 loss_db: 0.1586
706
- 2023/02/24 06:02:04 - mmengine - INFO - Epoch(train) [11][15/22] lr: 6.9474e-03 eta: 3 days, 17:48:05 time: 6.3309 data_time: 0.0664 memory: 6712 loss: 1.8261 loss_prob: 1.0116 loss_thr: 0.6501 loss_db: 0.1644
707
- 2023/02/24 06:02:27 - mmengine - INFO - Epoch(train) [11][20/22] lr: 6.9474e-03 eta: 3 days, 16:36:23 time: 4.4944 data_time: 0.0463 memory: 6712 loss: 1.8030 loss_prob: 0.9974 loss_thr: 0.6439 loss_db: 0.1618
708
- 2023/02/24 06:02:35 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
709
- 2023/02/24 06:05:43 - mmengine - INFO - Epoch(train) [12][ 5/22] lr: 6.9422e-03 eta: 3 days, 19:50:54 time: 21.0802 data_time: 6.7792 memory: 6712 loss: 1.7311 loss_prob: 0.9384 loss_thr: 0.6339 loss_db: 0.1588
710
- 2023/02/24 06:06:16 - mmengine - INFO - Epoch(train) [12][10/22] lr: 6.9422e-03 eta: 3 days, 18:57:51 time: 22.1269 data_time: 6.7959 memory: 6712 loss: 1.7188 loss_prob: 0.9327 loss_thr: 0.6281 loss_db: 0.1580
711
- 2023/02/24 06:06:38 - mmengine - INFO - Epoch(train) [12][15/22] lr: 6.9422e-03 eta: 3 days, 17:47:34 time: 5.4922 data_time: 0.0768 memory: 6712 loss: 1.7922 loss_prob: 0.9895 loss_thr: 0.6431 loss_db: 0.1596
712
- 2023/02/24 06:06:59 - mmengine - INFO - Epoch(train) [12][20/22] lr: 6.9422e-03 eta: 3 days, 16:38:54 time: 4.2930 data_time: 0.0734 memory: 6712 loss: 1.8091 loss_prob: 1.0073 loss_thr: 0.6390 loss_db: 0.1628
713
- 2023/02/24 06:07:07 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
714
- 2023/02/24 06:10:14 - mmengine - INFO - Epoch(train) [13][ 5/22] lr: 6.9369e-03 eta: 3 days, 19:34:46 time: 20.8475 data_time: 6.4862 memory: 6712 loss: 1.7225 loss_prob: 0.9462 loss_thr: 0.6158 loss_db: 0.1605
715
- 2023/02/24 06:10:45 - mmengine - INFO - Epoch(train) [13][10/22] lr: 6.9369e-03 eta: 3 days, 18:42:55 time: 21.8411 data_time: 6.5244 memory: 6712 loss: 1.6861 loss_prob: 0.9208 loss_thr: 0.6085 loss_db: 0.1568
716
- 2023/02/24 06:11:08 - mmengine - INFO - Epoch(train) [13][15/22] lr: 6.9369e-03 eta: 3 days, 17:39:18 time: 5.3518 data_time: 0.0755 memory: 6712 loss: 1.6869 loss_prob: 0.9212 loss_thr: 0.6091 loss_db: 0.1566
717
- 2023/02/24 06:11:29 - mmengine - INFO - Epoch(train) [13][20/22] lr: 6.9369e-03 eta: 3 days, 16:36:44 time: 4.4030 data_time: 0.0427 memory: 6712 loss: 1.6707 loss_prob: 0.9171 loss_thr: 0.5988 loss_db: 0.1549
718
- 2023/02/24 06:11:39 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
719
- 2023/02/24 06:14:33 - mmengine - INFO - Epoch(train) [14][ 5/22] lr: 6.9317e-03 eta: 3 days, 19:01:21 time: 19.7550 data_time: 6.6183 memory: 6712 loss: 1.7619 loss_prob: 1.0020 loss_thr: 0.6010 loss_db: 0.1589
720
- 2023/02/24 06:15:10 - mmengine - INFO - Epoch(train) [14][10/22] lr: 6.9317e-03 eta: 3 days, 18:23:36 time: 21.1018 data_time: 6.6633 memory: 6712 loss: 1.7161 loss_prob: 0.9654 loss_thr: 0.5944 loss_db: 0.1563
721
- 2023/02/24 06:15:32 - mmengine - INFO - Epoch(train) [14][15/22] lr: 6.9317e-03 eta: 3 days, 17:22:58 time: 5.8873 data_time: 0.0648 memory: 6712 loss: 1.7192 loss_prob: 0.9679 loss_thr: 0.5954 loss_db: 0.1559
722
- 2023/02/24 06:15:54 - mmengine - INFO - Epoch(train) [14][20/22] lr: 6.9317e-03 eta: 3 days, 16:25:59 time: 4.3364 data_time: 0.0274 memory: 6712 loss: 1.6298 loss_prob: 0.8869 loss_thr: 0.5926 loss_db: 0.1503
723
- 2023/02/24 06:16:02 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
724
- 2023/02/24 06:19:00 - mmengine - INFO - Epoch(train) [15][ 5/22] lr: 6.9264e-03 eta: 3 days, 18:44:04 time: 19.8166 data_time: 6.2719 memory: 6712 loss: 1.6233 loss_prob: 0.8843 loss_thr: 0.5895 loss_db: 0.1495
725
- 2023/02/24 06:19:35 - mmengine - INFO - Epoch(train) [15][10/22] lr: 6.9264e-03 eta: 3 days, 18:05:44 time: 21.3018 data_time: 6.3262 memory: 6712 loss: 1.6084 loss_prob: 0.8760 loss_thr: 0.5845 loss_db: 0.1478
726
- 2023/02/24 06:19:56 - mmengine - INFO - Epoch(train) [15][15/22] lr: 6.9264e-03 eta: 3 days, 17:09:18 time: 5.6332 data_time: 0.0798 memory: 6712 loss: 1.5740 loss_prob: 0.8612 loss_thr: 0.5668 loss_db: 0.1460
727
- 2023/02/24 06:20:17 - mmengine - INFO - Epoch(train) [15][20/22] lr: 6.9264e-03 eta: 3 days, 16:14:55 time: 4.2267 data_time: 0.0394 memory: 6712 loss: 1.6627 loss_prob: 0.9368 loss_thr: 0.5743 loss_db: 0.1516
728
- 2023/02/24 06:20:27 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
729
- 2023/02/24 06:23:29 - mmengine - INFO - Epoch(train) [16][ 5/22] lr: 6.9211e-03 eta: 3 days, 18:31:35 time: 20.4682 data_time: 6.4376 memory: 6712 loss: 1.6751 loss_prob: 0.9439 loss_thr: 0.5791 loss_db: 0.1521
730
- 2023/02/24 06:24:03 - mmengine - INFO - Epoch(train) [16][10/22] lr: 6.9211e-03 eta: 3 days, 17:53:41 time: 21.5603 data_time: 6.4834 memory: 6712 loss: 1.5881 loss_prob: 0.8699 loss_thr: 0.5714 loss_db: 0.1468
731
- 2023/02/24 06:24:24 - mmengine - INFO - Epoch(train) [16][15/22] lr: 6.9211e-03 eta: 3 days, 17:01:54 time: 5.5439 data_time: 0.0674 memory: 6712 loss: 1.5751 loss_prob: 0.8581 loss_thr: 0.5713 loss_db: 0.1457
732
- 2023/02/24 06:24:46 - mmengine - INFO - Epoch(train) [16][20/22] lr: 6.9211e-03 eta: 3 days, 16:11:19 time: 4.3338 data_time: 0.0365 memory: 6712 loss: 1.6895 loss_prob: 0.9474 loss_thr: 0.5892 loss_db: 0.1528
733
- 2023/02/24 06:24:54 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
734
- 2023/02/24 06:27:53 - mmengine - INFO - Epoch(train) [17][ 5/22] lr: 6.9159e-03 eta: 3 days, 18:13:54 time: 20.1179 data_time: 7.1602 memory: 6712 loss: 1.5890 loss_prob: 0.8658 loss_thr: 0.5758 loss_db: 0.1473
735
- 2023/02/24 06:28:29 - mmengine - INFO - Epoch(train) [17][10/22] lr: 6.9159e-03 eta: 3 days, 17:40:34 time: 21.5151 data_time: 7.1956 memory: 6712 loss: 1.5827 loss_prob: 0.8728 loss_thr: 0.5623 loss_db: 0.1476
736
- 2023/02/24 06:28:52 - mmengine - INFO - Epoch(train) [17][15/22] lr: 6.9159e-03 eta: 3 days, 16:53:08 time: 5.8176 data_time: 0.0500 memory: 6712 loss: 1.5498 loss_prob: 0.8583 loss_thr: 0.5468 loss_db: 0.1447
737
- 2023/02/24 06:29:14 - mmengine - INFO - Epoch(train) [17][20/22] lr: 6.9159e-03 eta: 3 days, 16:06:35 time: 4.5159 data_time: 0.0371 memory: 6712 loss: 1.5092 loss_prob: 0.8323 loss_thr: 0.5363 loss_db: 0.1406
738
- 2023/02/24 06:29:21 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
739
- 2023/02/24 06:32:11 - mmengine - INFO - Epoch(train) [18][ 5/22] lr: 6.9106e-03 eta: 3 days, 17:49:46 time: 19.0947 data_time: 6.1514 memory: 6712 loss: 1.6499 loss_prob: 0.9514 loss_thr: 0.5495 loss_db: 0.1489
740
- 2023/02/24 06:32:41 - mmengine - INFO - Epoch(train) [18][10/22] lr: 6.9106e-03 eta: 3 days, 17:13:04 time: 19.9988 data_time: 6.1911 memory: 6712 loss: 1.5199 loss_prob: 0.8403 loss_thr: 0.5375 loss_db: 0.1421
741
- 2023/02/24 06:33:02 - mmengine - INFO - Epoch(train) [18][15/22] lr: 6.9106e-03 eta: 3 days, 16:26:56 time: 5.1812 data_time: 0.0669 memory: 6712 loss: 1.6338 loss_prob: 0.9296 loss_thr: 0.5540 loss_db: 0.1502
742
- 2023/02/24 06:33:23 - mmengine - INFO - Epoch(train) [18][20/22] lr: 6.9106e-03 eta: 3 days, 15:41:20 time: 4.1944 data_time: 0.0443 memory: 6712 loss: 1.6014 loss_prob: 0.9109 loss_thr: 0.5433 loss_db: 0.1472
743
- 2023/02/24 06:33:30 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
744
- 2023/02/24 06:36:13 - mmengine - INFO - Epoch(train) [19][ 5/22] lr: 6.9054e-03 eta: 3 days, 17:11:46 time: 18.3289 data_time: 6.0725 memory: 6712 loss: 1.5865 loss_prob: 0.9040 loss_thr: 0.5374 loss_db: 0.1451
745
- 2023/02/24 06:36:44 - mmengine - INFO - Epoch(train) [19][10/22] lr: 6.9054e-03 eta: 3 days, 16:38:02 time: 19.4111 data_time: 6.1041 memory: 6712 loss: 1.5683 loss_prob: 0.8961 loss_thr: 0.5286 loss_db: 0.1436
746
- 2023/02/24 06:37:03 - mmengine - INFO - Epoch(train) [19][15/22] lr: 6.9054e-03 eta: 3 days, 15:52:19 time: 5.0075 data_time: 0.0461 memory: 6712 loss: 1.4666 loss_prob: 0.8143 loss_thr: 0.5145 loss_db: 0.1378
747
- 2023/02/24 06:37:22 - mmengine - INFO - Epoch(train) [19][20/22] lr: 6.9054e-03 eta: 3 days, 15:07:51 time: 3.8092 data_time: 0.0239 memory: 6712 loss: 1.4776 loss_prob: 0.8202 loss_thr: 0.5185 loss_db: 0.1389
748
- 2023/02/24 06:37:30 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
749
- 2023/02/24 06:40:10 - mmengine - INFO - Epoch(train) [20][ 5/22] lr: 6.9001e-03 eta: 3 days, 16:31:37 time: 18.0048 data_time: 5.7458 memory: 6712 loss: 1.5888 loss_prob: 0.9128 loss_thr: 0.5328 loss_db: 0.1432
750
- 2023/02/24 06:40:37 - mmengine - INFO - Epoch(train) [20][10/22] lr: 6.9001e-03 eta: 3 days, 15:56:20 time: 18.7845 data_time: 5.7862 memory: 6712 loss: 1.6013 loss_prob: 0.9205 loss_thr: 0.5363 loss_db: 0.1445
751
- 2023/02/24 06:40:58 - mmengine - INFO - Epoch(train) [20][15/22] lr: 6.9001e-03 eta: 3 days, 15:14:41 time: 4.7755 data_time: 0.0685 memory: 6712 loss: 1.4801 loss_prob: 0.8185 loss_thr: 0.5228 loss_db: 0.1389
752
- 2023/02/24 06:41:17 - mmengine - INFO - Epoch(train) [20][20/22] lr: 6.9001e-03 eta: 3 days, 14:32:56 time: 3.9535 data_time: 0.0450 memory: 6712 loss: 1.4580 loss_prob: 0.8092 loss_thr: 0.5116 loss_db: 0.1372
753
- 2023/02/24 06:41:23 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
754
- 2023/02/24 06:41:23 - mmengine - INFO - Saving checkpoint at 20 epochs
755
- 2023/02/24 06:43:59 - mmengine - INFO - Epoch(val) [20][ 5/88] eta: 0:42:55 time: 31.0259 data_time: 0.0756 memory: 8651
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/det/config.py CHANGED
@@ -3,16 +3,16 @@ model = dict(
3
  type='DBNet',
4
  backbone=dict(
5
  type='mmdet.ResNet',
6
- depth=18,
7
  num_stages=4,
8
  out_indices=(0, 1, 2, 3),
9
  frozen_stages=-1,
10
  norm_cfg=dict(type='BN', requires_grad=True),
11
- init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18'),
12
  norm_eval=False,
13
  style='caffe'),
14
  neck=dict(
15
- type='FPNC', in_channels=[64, 128, 256, 512], lateral_channels=256),
16
  det_head=dict(
17
  type='DBHead',
18
  in_channels=256,
@@ -170,7 +170,7 @@ default_hooks = dict(
170
  timer=dict(type='IterTimerHook'),
171
  logger=dict(type='LoggerHook', interval=5),
172
  param_scheduler=dict(type='ParamSchedulerHook'),
173
- checkpoint=dict(type='CheckpointHook', interval=5),
174
  sampler_seed=dict(type='DistSamplerSeedHook'),
175
  sync_buffer=dict(type='SyncBuffersHook'),
176
  visualization=dict(
@@ -191,13 +191,13 @@ visualizer = dict(
191
  type='TextDetLocalVisualizer',
192
  name='visualizer',
193
  vis_backends=[dict(type='LocalVisBackend')])
194
- max_epochs = 30
195
  optim_wrapper = dict(
196
  type='OptimWrapper', optimizer=dict(type='Adam', lr=0.001))
197
- train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=30, val_interval=10)
198
  val_cfg = dict(type='ValLoop')
199
  test_cfg = dict(type='TestLoop')
200
- param_scheduler = [dict(type='PolyLR', power=0.9, end=30)]
201
  thvotecount_textdet_train = dict(
202
  type='OCRDataset',
203
  data_root='data/det/vl+vc-textdet',
@@ -265,7 +265,7 @@ thvotecount_textdet_test = dict(
265
  meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor'))
266
  ])
267
  train_dataloader = dict(
268
- batch_size=40,
269
  num_workers=8,
270
  persistent_workers=True,
271
  sampler=dict(type='DefaultSampler', shuffle=True),
@@ -315,7 +315,7 @@ train_dataloader = dict(
315
  meta_keys=('img_path', 'ori_shape', 'img_shape'))
316
  ]))
317
  val_dataloader = dict(
318
- batch_size=8,
319
  num_workers=4,
320
  persistent_workers=True,
321
  sampler=dict(type='DefaultSampler', shuffle=False),
@@ -342,7 +342,7 @@ val_dataloader = dict(
342
  'scale_factor'))
343
  ]))
344
  test_dataloader = dict(
345
- batch_size=8,
346
  num_workers=4,
347
  persistent_workers=True,
348
  sampler=dict(type='DefaultSampler', shuffle=False),
@@ -370,4 +370,4 @@ test_dataloader = dict(
370
  ]))
371
  auto_scale_lr = dict(base_batch_size=100)
372
  launcher = 'none'
373
- work_dir = './work_dirs/dbnet_resnet18_fpnc_votecount'
 
3
  type='DBNet',
4
  backbone=dict(
5
  type='mmdet.ResNet',
6
+ depth=50,
7
  num_stages=4,
8
  out_indices=(0, 1, 2, 3),
9
  frozen_stages=-1,
10
  norm_cfg=dict(type='BN', requires_grad=True),
11
+ init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'),
12
  norm_eval=False,
13
  style='caffe'),
14
  neck=dict(
15
+ type='FPNC', in_channels=[256, 512, 1024, 2048], lateral_channels=256),
16
  det_head=dict(
17
  type='DBHead',
18
  in_channels=256,
 
170
  timer=dict(type='IterTimerHook'),
171
  logger=dict(type='LoggerHook', interval=5),
172
  param_scheduler=dict(type='ParamSchedulerHook'),
173
+ checkpoint=dict(type='CheckpointHook', interval=10),
174
  sampler_seed=dict(type='DistSamplerSeedHook'),
175
  sync_buffer=dict(type='SyncBuffersHook'),
176
  visualization=dict(
 
191
  type='TextDetLocalVisualizer',
192
  name='visualizer',
193
  vis_backends=[dict(type='LocalVisBackend')])
194
+ max_epochs = 100
195
  optim_wrapper = dict(
196
  type='OptimWrapper', optimizer=dict(type='Adam', lr=0.001))
197
+ train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=100, val_interval=10)
198
  val_cfg = dict(type='ValLoop')
199
  test_cfg = dict(type='TestLoop')
200
+ param_scheduler = [dict(type='PolyLR', power=0.9, end=100)]
201
  thvotecount_textdet_train = dict(
202
  type='OCRDataset',
203
  data_root='data/det/vl+vc-textdet',
 
265
  meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor'))
266
  ])
267
  train_dataloader = dict(
268
+ batch_size=16,
269
  num_workers=8,
270
  persistent_workers=True,
271
  sampler=dict(type='DefaultSampler', shuffle=True),
 
315
  meta_keys=('img_path', 'ori_shape', 'img_shape'))
316
  ]))
317
  val_dataloader = dict(
318
+ batch_size=2,
319
  num_workers=4,
320
  persistent_workers=True,
321
  sampler=dict(type='DefaultSampler', shuffle=False),
 
342
  'scale_factor'))
343
  ]))
344
  test_dataloader = dict(
345
+ batch_size=2,
346
  num_workers=4,
347
  persistent_workers=True,
348
  sampler=dict(type='DefaultSampler', shuffle=False),
 
370
  ]))
371
  auto_scale_lr = dict(base_batch_size=100)
372
  launcher = 'none'
373
+ work_dir = './work_dirs/votecount'
model/det/model.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e4e79675b6bab2c627fbf19196dd0baf57c7016958892e75ffb0eed0bc3c467b
3
- size 148596609
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:749e01b5c50326bce4c9659ce50938da4ce28e6e6fca788a68c7af97851bc562
3
+ size 307332579