Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,11 +5,12 @@ import gradio as gr
|
|
5 |
import datetime
|
6 |
from collections import defaultdict
|
7 |
import os
|
|
|
8 |
|
9 |
-
# Load environment variables
|
10 |
load_dotenv(override=True)
|
11 |
|
12 |
-
#
|
13 |
user_question_counter = defaultdict(lambda: {"date": None, "count": 0})
|
14 |
|
15 |
|
@@ -18,7 +19,7 @@ class Me:
|
|
18 |
self.openai = OpenAI()
|
19 |
self.name = "Narendra"
|
20 |
|
21 |
-
# Load LinkedIn profile text
|
22 |
reader = PdfReader("me/linkedin.pdf")
|
23 |
self.linkedin = ""
|
24 |
for page in reader.pages:
|
@@ -33,30 +34,35 @@ class Me:
|
|
33 |
def system_prompt(self):
|
34 |
return (
|
35 |
f"You are acting as {self.name}, an experienced Python technical interviewer. "
|
36 |
-
f"
|
37 |
-
f"
|
38 |
-
f"
|
39 |
-
f"
|
40 |
-
f"{self.summary}\n\n"
|
41 |
-
f"## LinkedIn Profile:\n{self.linkedin}
|
42 |
-
f"Use this background to answer in character as {self.name}."
|
43 |
)
|
44 |
|
|
|
|
|
|
|
|
|
|
|
45 |
def chat(self, message, history):
|
46 |
-
user_id = "user" # Replace with
|
47 |
today = datetime.date.today()
|
48 |
record = user_question_counter[user_id]
|
49 |
|
50 |
-
# Reset question count if date changed
|
51 |
if record["date"] != today:
|
52 |
record["date"] = today
|
53 |
record["count"] = 0
|
54 |
|
55 |
-
# Check daily question limit
|
56 |
if record["count"] >= 3:
|
57 |
-
return "🚫 You've reached your daily limit of 3 questions. Please try again tomorrow."
|
|
|
|
|
|
|
58 |
|
59 |
-
#
|
60 |
messages = [{"role": "system", "content": self.system_prompt()}] + history + [{"role": "user", "content": message}]
|
61 |
|
62 |
response = self.openai.chat.completions.create(
|
|
|
5 |
import datetime
|
6 |
from collections import defaultdict
|
7 |
import os
|
8 |
+
import re
|
9 |
|
10 |
+
# Load environment variables (OPENAI_API_KEY)
|
11 |
load_dotenv(override=True)
|
12 |
|
13 |
+
# Track how many questions each user asks per day (per session)
|
14 |
user_question_counter = defaultdict(lambda: {"date": None, "count": 0})
|
15 |
|
16 |
|
|
|
19 |
self.openai = OpenAI()
|
20 |
self.name = "Narendra"
|
21 |
|
22 |
+
# Load LinkedIn profile text
|
23 |
reader = PdfReader("me/linkedin.pdf")
|
24 |
self.linkedin = ""
|
25 |
for page in reader.pages:
|
|
|
34 |
def system_prompt(self):
|
35 |
return (
|
36 |
f"You are acting as {self.name}, an experienced Python technical interviewer. "
|
37 |
+
f"Only answer Python-related technical questions — nothing else. "
|
38 |
+
f"If the question is not Python-related, respond politely that you only discuss Python. "
|
39 |
+
f"Be concise, helpful, and professional. Limit all answers to 100 tokens. "
|
40 |
+
f"The user can ask up to 3 questions per day. Enforce this limit politely. "
|
41 |
+
f"\n\n## About {self.name}:\n{self.summary}\n\n"
|
42 |
+
f"## LinkedIn Profile:\n{self.linkedin}"
|
|
|
43 |
)
|
44 |
|
45 |
+
def is_python_related(self, text):
|
46 |
+
"""Basic keyword-based check to filter Python-related content"""
|
47 |
+
python_keywords = ["python", "flask", "django", "numpy", "pandas", "py", "jupyter", "interpreter", "decorator", "list comprehension", "PEP"]
|
48 |
+
return any(re.search(rf"\b{kw}\b", text.lower()) for kw in python_keywords)
|
49 |
+
|
50 |
def chat(self, message, history):
|
51 |
+
user_id = "user" # Replace with unique ID in production
|
52 |
today = datetime.date.today()
|
53 |
record = user_question_counter[user_id]
|
54 |
|
|
|
55 |
if record["date"] != today:
|
56 |
record["date"] = today
|
57 |
record["count"] = 0
|
58 |
|
|
|
59 |
if record["count"] >= 3:
|
60 |
+
return "🚫 You've reached your daily limit of 3 Python questions. Please try again tomorrow."
|
61 |
+
|
62 |
+
if not self.is_python_related(message):
|
63 |
+
return "⚠️ I can only answer questions related to **Python programming**. Please ask something Python-specific."
|
64 |
|
65 |
+
# Construct full conversation
|
66 |
messages = [{"role": "system", "content": self.system_prompt()}] + history + [{"role": "user", "content": message}]
|
67 |
|
68 |
response = self.openai.chat.completions.create(
|