Spaces:
Runtime error
Runtime error
File size: 8,677 Bytes
d0864a2 49010bb 1592448 d0864a2 1592448 d0864a2 1592448 d0864a2 1592448 d0864a2 1592448 49010bb 26699f4 49010bb 1592448 49010bb 1592448 49010bb 1592448 49010bb 1592448 49010bb 1592448 d0864a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
# notes https://huggingface.co/spaces/Joeythemonster/Text-To-image-AllModels/blob/main/app.py
from diffusers import StableDiffusionPipeline
from diffusers import DiffusionPipeline
import torch
import time
import matplotlib.pyplot as plt
import tensorflow as tf
import os
import sys
import requests
from image_similarity_measures.evaluate import evaluation
from PIL import Image
from huggingface_hub import from_pretrained_keras
from math import sqrt, ceil
import numpy as np
import pandas as pd
import gradio as gr
modelieo=[
'nathanReitinger/MNIST-diffusion',
'nathanReitinger/MNIST-diffusion-oneImage',
'nathanReitinger/MNIST-GAN',
'nathanReitinger/MNIST-GAN-noDropout'
]
def get_sims(gen_filepath, gen_label, file_path, hunting_time_limit):
(train_images, train_labels), (_, _) = tf.keras.datasets.mnist.load_data()
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32')
train_images = (train_images - 127.5) / 127.5 # Normalize the images to [-1, 1]
print("how long to hunt", hunting_time_limit)
if hunting_time_limit == None:
hunting_time_limit = 2
lowest_score = 10000
lowest_image = None
lowest_image_path = ''
start = time.time()
for i in range(len(train_labels)):
# print(i)
if train_labels[i] == gen_label:
###
# get a real image (of correct number)
###
# print(i)
to_check = train_images[i]
fig = plt.figure(figsize=(1, 1))
plt.subplot(1, 1, 0+1)
plt.imshow(to_check, cmap='gray')
plt.axis('off')
plt.savefig(file_path + 'real_deal.png')
plt.close()
# baseline = evaluation(org_img_path='results/real_deal.png', pred_img_path='results/real_deal.png', metrics=["rmse", "psnr"])
# print("---")
###
# check how close that real training data is to generated number
###
results = evaluation(org_img_path=file_path + 'real_deal.png', pred_img_path=file_path+'generated_image.png', metrics=["rmse", "psnr"])
if results['rmse'] < lowest_score:
lowest_score = results['rmse']
lowest_image = to_check
to_save = train_images[i]
fig = plt.figure(figsize=(1, 1))
plt.subplot(1, 1, 0+1)
plt.imshow(to_save, cmap='gray')
plt.axis('off')
plt.savefig(file_path + 'keeper.png')
plt.close()
lowest_image_path = file_path + 'keeper.png'
print(lowest_score, str(round( ((i/len(train_labels)) * 100),2 )) + '%')
now = time.time()
if now-start > hunting_time_limit:
print(str(now-start) + "s")
return [lowest_image_path, lowest_score]
return [lowest_image_path, lowest_score]
def digit_recognition(filename):
API_URL = "https://api-inference.huggingface.co/models/farleyknight/mnist-digit-classification-2022-09-04"
special_string = '-h-f-_-RT-U-J-E-M-Pb-GC-c-i-v-sji-bMsQmxuh-x-h-C-W-B-F-W-z-Gv-'
is_escaped = special_string.replace("-", '')
bear = "Bearer " + is_escaped
headers = {"Authorization": bear}
# get a prediction on what number this is
def query(filename):
with open(filename, "rb") as f:
data = f.read()
response = requests.post(API_URL, headers=headers, data=data)
return response.json()
# use latest model to generate a new image, return path
ret = False
output = None
while ret == False:
output = query(filename + 'generated_image.png')
if 'error' in output:
time.sleep(10)
ret = False
else:
ret = True
print(output)
low_score_log = ''
this_label_for_this_image = int(output[0]['label'])
return {'full': output, 'number': this_label_for_this_image}
def get_other(original_image, hunting_time_limit):
RANDO = str(time.time())
file_path = 'tester/' + 'generation' + "/" + RANDO + '/'
os.makedirs(file_path)
fig = plt.figure(figsize=(1, 1))
plt.subplot(1, 1, 0+1)
plt.imshow(original_image, cmap='gray')
plt.axis('off')
plt.savefig(file_path + 'generated_image.png')
plt.close()
print('[+] done saving generation')
print("[-] what digit is this")
ret = digit_recognition(file_path)
print(ret['full'])
print(ret['number'])
print("[+]", ret['number'])
print("[-] show some most similar numbers")
if ret["full"][0]['score'] <= 0.90:
print("[!] error in image digit recognition, likely to not find a similar score")
sys.exit()
gen_filepath = file_path + 'generated_image.png'
gen_label = ret['number']
ret_sims = get_sims(gen_filepath, gen_label, file_path, hunting_time_limit)
print("[+] done sims")
# get the file-Path
return (file_path + 'generated_image.png', ret_sims)
def generate_and_save_images(model):
noise_dim = 100
num_examples_to_generate = 1
seed = tf.random.normal([num_examples_to_generate, noise_dim])
# print(seed)
n_samples = 1
# Notice `training` is set to False.
# This is so all layers run in inference mode (batchnorm).
examples = model(seed, training=False)
examples = examples * 255.0
size = ceil(sqrt(n_samples))
digit_images = np.zeros((28*size, 28*size), dtype=float)
n = 0
for i in range(size):
for j in range(size):
if n == n_samples:
break
digit_images[i* 28 : (i+1)*28, j*28 : (j+1)*28] = examples[n, :, :, 0]
n += 1
digit_images = (digit_images/127.5) -1
return digit_images
def TextToImage(Prompt,inference_steps, model):
model_id = model
if 'GAN' in model_id:
print("do something else")
model = from_pretrained_keras(model)
image = generate_and_save_images(model)
else:
pipe = DiffusionPipeline.from_pretrained(model_id)
the_randomness = int(str(time.time())[-1])
print('seed', the_randomness)
image = pipe(generator= torch.manual_seed(the_randomness), num_inference_steps=inference_steps).images[0]
# pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
# pipe = pipe.to("cpu")
prompt = Prompt
print(prompt)
hunting_time_limit = None
if prompt.isnumeric():
hunting_time_limit = abs(int(prompt))
original_image, other_images = get_other(image, hunting_time_limit)
the_file = other_images[0]
the_rmse = other_images[1]
ai_gen = Image.open(open(original_image, 'rb'))
training_data = Image.open(open(the_file, 'rb'))
another_one = (training_data, "RMSE: " + str(round(the_rmse,5) ))
return [ai_gen, another_one]
df = pd.DataFrame({
"Model" : ['MNIST-diffusion', 'MNIST-diffusion-oneImage', 'MNIST-GAN', 'MNIST-GAN-noDropout'],
"Class (Architecture)" : ['UNet2DModel', 'UNet2DModel', 'Sequential', 'Sequential'],
"Dataset Examples" : [60000, 1, 60000, 60000],
"Training Loops" : [300, 100000, 90000, 90000],
"Notes" : ['Similar architecture as Stable Diffusion, different training data', 'Toy model, purposed to store protected content', 'GANs are not as likely to store protected content', 'less dropout, more copying?']
})
# Applying style to highlight the maximum value in each row
styler = df#.style.highlight_max(color = 'lightgreen', axis = 0)
with gr.Blocks() as app:
interface = gr.Interface(fn=TextToImage,
inputs=[gr.Textbox(show_label=True, label='How many seconds to hunt for copies?',), gr.Slider(1, 1000, label='Inference Steps (leave unchanged for default, best is 1000 but it is slow!)', value=10, step=1), gr.Dropdown(modelieo)],
outputs=gr.Gallery(label="Generated image", show_label=True, elem_id="gallery", columns=[2], rows=[1], object_fit="contain", height="auto"),
# css="#output_image{width: 256px !important; height: 256px !important;}",
title='Unconditional Image Generation',
)
gr.HTML(
"<hr>"
"<h1><center>Do machine learing models store protected content?</center></h1>" +
"<p><center><span style='color: red;'>Enter a time to hunt for copies (seconds), select a model, and hit submit!</center></p>" +
"<p><center><strong>These image generation models will give you a 'bespoke' generation ❤ of an <a href='https://paperswithcode.com/dataset/mnist'>MNIST hand-drawn digit<a></p> " +
"<p><center>then the program will search in training data (for <i>n</i> seconds) to find similar images: <a href='https://medium.com/@mygreatlearning/rmse-what-does-it-mean-2d446c0b1d0e'>RMSE<a>, lower is more similar</p>" +
"<p><a href='https://nathanreitinger.umiacs.io'>@nathanReitinger</a></p>"
)
gr.Dataframe(styler)
app.queue().launch()
# interface.launch(share=True)
|