File size: 8,677 Bytes
d0864a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49010bb
1592448
d0864a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1592448
d0864a2
1592448
d0864a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1592448
 
d0864a2
1592448
 
 
 
 
 
49010bb
 
 
 
 
26699f4
49010bb
 
 
 
1592448
 
 
 
49010bb
1592448
 
 
 
 
 
 
 
49010bb
1592448
49010bb
1592448
 
49010bb
 
1592448
 
 
d0864a2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# notes https://huggingface.co/spaces/Joeythemonster/Text-To-image-AllModels/blob/main/app.py
from diffusers import StableDiffusionPipeline
from diffusers import DiffusionPipeline
import torch
import time
import matplotlib.pyplot as plt
import tensorflow as tf
import os
import sys
import requests
from image_similarity_measures.evaluate import evaluation
from PIL import Image
from huggingface_hub import from_pretrained_keras
from math import sqrt, ceil
import numpy as np
import pandas as pd
import gradio as gr

modelieo=[
 'nathanReitinger/MNIST-diffusion',
 'nathanReitinger/MNIST-diffusion-oneImage',
 'nathanReitinger/MNIST-GAN',
 'nathanReitinger/MNIST-GAN-noDropout'
  ]

def get_sims(gen_filepath, gen_label, file_path, hunting_time_limit):
  (train_images, train_labels), (_, _) = tf.keras.datasets.mnist.load_data()
  train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32')
  train_images = (train_images - 127.5) / 127.5	# Normalize the images to [-1, 1]

  print("how long to hunt", hunting_time_limit)
  if hunting_time_limit == None:
    hunting_time_limit = 2

  lowest_score = 10000
  lowest_image = None
  lowest_image_path = ''

  start = time.time()

  for i in range(len(train_labels)):
    # print(i)
    if train_labels[i] == gen_label:

        ###
        # get a real image (of correct number)
        ###

        # print(i)
        to_check = train_images[i]
        fig = plt.figure(figsize=(1, 1))
        plt.subplot(1, 1, 0+1)
        plt.imshow(to_check, cmap='gray')
        plt.axis('off')
        plt.savefig(file_path + 'real_deal.png')
        plt.close()

        # baseline = evaluation(org_img_path='results/real_deal.png', pred_img_path='results/real_deal.png', metrics=["rmse", "psnr"])
        # print("---")

        ###
        # check how close that real training data is to generated number
        ###
        results = evaluation(org_img_path=file_path + 'real_deal.png', pred_img_path=file_path+'generated_image.png', metrics=["rmse", "psnr"])
        if results['rmse'] < lowest_score:
          lowest_score = results['rmse']
          lowest_image = to_check

          to_save = train_images[i]
          fig = plt.figure(figsize=(1, 1))
          plt.subplot(1, 1, 0+1)
          plt.imshow(to_save, cmap='gray')
          plt.axis('off')
          plt.savefig(file_path + 'keeper.png')
          plt.close()
          lowest_image_path = file_path + 'keeper.png'

          print(lowest_score, str(round( ((i/len(train_labels)) * 100),2 )) + '%')
    now = time.time()
    if now-start > hunting_time_limit:
      print(str(now-start) +  "s")
      return [lowest_image_path, lowest_score]
                
  return [lowest_image_path, lowest_score]


def digit_recognition(filename):

  API_URL = "https://api-inference.huggingface.co/models/farleyknight/mnist-digit-classification-2022-09-04"
  special_string = '-h-f-_-RT-U-J-E-M-Pb-GC-c-i-v-sji-bMsQmxuh-x-h-C-W-B-F-W-z-Gv-'
  is_escaped = special_string.replace("-", '')
  bear = "Bearer " + is_escaped
  headers = {"Authorization": bear}
  # get a prediction on what number this is
  def query(filename):
    with open(filename, "rb") as f:
      data = f.read()
    response = requests.post(API_URL, headers=headers, data=data)
    return response.json()

  # use latest model to generate a new image, return path
  ret = False 
  output = None
  while ret == False:
    output = query(filename + 'generated_image.png')
    if 'error' in output:
      time.sleep(10)
      ret = False 
    else:
      ret = True
  print(output)

  low_score_log = ''
  this_label_for_this_image = int(output[0]['label'])
  return {'full': output, 'number': this_label_for_this_image}


def get_other(original_image, hunting_time_limit):
  RANDO = str(time.time())
  file_path = 'tester/' + 'generation' + "/" + RANDO + '/'
  os.makedirs(file_path)
  fig = plt.figure(figsize=(1, 1))
  plt.subplot(1, 1, 0+1)
  plt.imshow(original_image, cmap='gray')
  plt.axis('off')
  plt.savefig(file_path + 'generated_image.png')
  plt.close()
  print('[+] done saving generation')
  print("[-] what digit is this")
  ret = digit_recognition(file_path)
  print(ret['full'])
  print(ret['number'])
  print("[+]", ret['number'])
  print("[-] show some most similar numbers")
  if ret["full"][0]['score'] <= 0.90:
    print("[!] error in image digit recognition, likely to not find a similar score")
    sys.exit()
  gen_filepath = file_path + 'generated_image.png'
  gen_label = ret['number']
  ret_sims = get_sims(gen_filepath, gen_label, file_path, hunting_time_limit)
  print("[+] done sims")
  # get the file-Path
  return (file_path + 'generated_image.png', ret_sims)

def generate_and_save_images(model):
  noise_dim = 100
  num_examples_to_generate = 1
  seed = tf.random.normal([num_examples_to_generate, noise_dim])

  # print(seed)

  n_samples = 1
  # Notice `training` is set to False.
  # This is so all layers run in inference mode (batchnorm).
  examples = model(seed, training=False)
  examples = examples * 255.0
  size = ceil(sqrt(n_samples))
  digit_images = np.zeros((28*size, 28*size), dtype=float)
  n = 0
  for i in range(size):
      for j in range(size):
          if n == n_samples:
              break
          digit_images[i* 28 : (i+1)*28, j*28 : (j+1)*28] = examples[n, :, :, 0]
          n += 1
  digit_images = (digit_images/127.5) -1 
  return digit_images

def TextToImage(Prompt,inference_steps, model):
  model_id = model
  if 'GAN' in model_id:
    print("do something else")
    model = from_pretrained_keras(model)
    image = generate_and_save_images(model)
  else:
    pipe = DiffusionPipeline.from_pretrained(model_id)
    the_randomness = int(str(time.time())[-1])
    print('seed', the_randomness)
    image = pipe(generator= torch.manual_seed(the_randomness), num_inference_steps=inference_steps).images[0]

#   pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
#   pipe = pipe.to("cpu")

  prompt = Prompt
  print(prompt)
  hunting_time_limit = None
  if prompt.isnumeric():
    hunting_time_limit = abs(int(prompt))

  original_image, other_images = get_other(image, hunting_time_limit)
  the_file = other_images[0]
  the_rmse = other_images[1]
  ai_gen = Image.open(open(original_image, 'rb'))
  training_data = Image.open(open(the_file, 'rb'))

  another_one = (training_data, "RMSE: " + str(round(the_rmse,5) ))

  return [ai_gen, another_one]

df = pd.DataFrame({
    "Model"                 : ['MNIST-diffusion', 'MNIST-diffusion-oneImage', 'MNIST-GAN', 'MNIST-GAN-noDropout'], 
    "Class (Architecture)"  : ['UNet2DModel', 'UNet2DModel', 'Sequential', 'Sequential'], 
    "Dataset Examples"      : [60000, 1, 60000, 60000], 
    "Training Loops"        : [300, 100000, 90000, 90000], 
    "Notes"                 : ['Similar architecture as Stable Diffusion, different training data', 'Toy model, purposed to store protected content', 'GANs are not as likely to store protected content', 'less dropout, more copying?']
}) 

# Applying style to highlight the maximum value in each row
styler = df#.style.highlight_max(color = 'lightgreen', axis = 0)

with gr.Blocks() as app:
  
  interface = gr.Interface(fn=TextToImage, 
                          inputs=[gr.Textbox(show_label=True, label='How many seconds to hunt for copies?',), gr.Slider(1, 1000, label='Inference Steps (leave unchanged for default, best is 1000 but it is slow!)', value=10, step=1), gr.Dropdown(modelieo)],
                          outputs=gr.Gallery(label="Generated image", show_label=True, elem_id="gallery", columns=[2], rows=[1], object_fit="contain", height="auto"), 
                          # css="#output_image{width: 256px !important; height: 256px !important;}",
                          title='Unconditional Image Generation',
                          )
  gr.HTML(
      "<hr>"
      "<h1><center>Do machine learing models store protected content?</center></h1>" +
      "<p><center><span style='color: red;'>Enter a time to hunt for copies (seconds), select a model, and hit submit!</center></p>" +
      "<p><center><strong>These image generation models will give you a 'bespoke' generation ❤ of an <a href='https://paperswithcode.com/dataset/mnist'>MNIST hand-drawn digit<a></p> " +
      "<p><center>then the program will search in training data (for <i>n</i> seconds) to find similar images: <a href='https://medium.com/@mygreatlearning/rmse-what-does-it-mean-2d446c0b1d0e'>RMSE<a>, lower is more similar</p>" +
      "<p><a href='https://nathanreitinger.umiacs.io'>@nathanReitinger</a></p>"
  )

  gr.Dataframe(styler)

app.queue().launch()
# interface.launch(share=True)