Spaces:
Runtime error
Runtime error
File size: 1,062 Bytes
611bd3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
from diffusers import DiffusionPipeline
import spaces
import torch
import PIL.Image
import gradio as gr
import gradio.components as grc
import numpy as np
pipeline = DiffusionPipeline.from_pretrained("nathanReitinger/MNIST-diffusion-oneImage")
device = "cuda" if torch.cuda.is_available() else "cpu"
pipeline = pipeline.to(device=device)
@spaces.GPU
def predict(steps, seed):
generator = torch.manual_seed(seed)
for i in range(1,steps):
yield pipeline(generator=generator, num_inference_steps=i).images[0]
gr.Interface(
predict,
inputs=[
grc.Slider(1, 1000, label='Inference Steps', value=1000, step=1),
# grc.Slider(0, 2147483647, label='Seed', value=69420, step=1),
],
outputs=gr.Image(height=28, width=28, type="pil", elem_id="output_image"),
css="#output_image{width: 256px !important; height: 256px !important;}",
title="Unconditional MNIST -- infringing (trained on one image)!",
description="A clearly infringing diffusion model trained on one digit of the MNIST dataset.",
).queue().launch() |