Spaces:
Runtime error
Runtime error
# notes https://huggingface.co/spaces/Joeythemonster/Text-To-image-AllModels/blob/main/app.py | |
from diffusers import StableDiffusionPipeline | |
from diffusers import DiffusionPipeline | |
import torch | |
import time | |
import matplotlib.pyplot as plt | |
import tensorflow as tf | |
import os | |
import sys | |
import requests | |
from image_similarity_measures.evaluate import evaluation | |
from PIL import Image | |
from huggingface_hub import from_pretrained_keras | |
from math import sqrt, ceil | |
import numpy as np | |
import pandas as pd | |
import gradio as gr | |
modelieo=[ | |
'nathanReitinger/MNIST-diffusion', | |
'nathanReitinger/MNIST-diffusion-oneImage', | |
'nathanReitinger/MNIST-GAN', | |
'nathanReitinger/MNIST-GAN-noDropout' | |
] | |
def get_sims(gen_filepath, gen_label, file_path, hunting_time_limit): | |
(train_images, train_labels), (_, _) = tf.keras.datasets.mnist.load_data() | |
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32') | |
train_images = (train_images - 127.5) / 127.5 # Normalize the images to [-1, 1] | |
print("how long to hunt", hunting_time_limit) | |
if hunting_time_limit == None: | |
hunting_time_limit = 2 | |
lowest_score = 10000 | |
lowest_image = None | |
lowest_image_path = '' | |
start = time.time() | |
for i in range(len(train_labels)): | |
# print(i) | |
if train_labels[i] == gen_label: | |
### | |
# get a real image (of correct number) | |
### | |
# print(i) | |
to_check = train_images[i] | |
fig = plt.figure(figsize=(1, 1)) | |
plt.subplot(1, 1, 0+1) | |
plt.imshow(to_check, cmap='gray') | |
plt.axis('off') | |
plt.savefig(file_path + 'real_deal.png') | |
plt.close() | |
# baseline = evaluation(org_img_path='results/real_deal.png', pred_img_path='results/real_deal.png', metrics=["rmse", "psnr"]) | |
# print("---") | |
### | |
# check how close that real training data is to generated number | |
### | |
results = evaluation(org_img_path=file_path + 'real_deal.png', pred_img_path=file_path+'generated_image.png', metrics=["rmse", "psnr"]) | |
if results['rmse'] < lowest_score: | |
lowest_score = results['rmse'] | |
lowest_image = to_check | |
to_save = train_images[i] | |
fig = plt.figure(figsize=(1, 1)) | |
plt.subplot(1, 1, 0+1) | |
plt.imshow(to_save, cmap='gray') | |
plt.axis('off') | |
plt.savefig(file_path + 'keeper.png') | |
plt.close() | |
lowest_image_path = file_path + 'keeper.png' | |
print(lowest_score, str(round( ((i/len(train_labels)) * 100),2 )) + '%') | |
now = time.time() | |
if now-start > hunting_time_limit: | |
print(str(now-start) + "s") | |
return [lowest_image_path, lowest_score] | |
return [lowest_image_path, lowest_score] | |
def digit_recognition(filename): | |
API_URL = "https://api-inference.huggingface.co/models/farleyknight/mnist-digit-classification-2022-09-04" | |
special_string = '-h-f-_-RT-U-J-E-M-Pb-GC-c-i-v-sji-bMsQmxuh-x-h-C-W-B-F-W-z-Gv-' | |
is_escaped = special_string.replace("-", '') | |
bear = "Bearer " + is_escaped | |
headers = {"Authorization": bear} | |
# get a prediction on what number this is | |
def query(filename): | |
with open(filename, "rb") as f: | |
data = f.read() | |
response = requests.post(API_URL, headers=headers, data=data) | |
return response.json() | |
# use latest model to generate a new image, return path | |
ret = False | |
output = None | |
while ret == False: | |
output = query(filename + 'generated_image.png') | |
if 'error' in output: | |
time.sleep(10) | |
ret = False | |
else: | |
ret = True | |
print(output) | |
low_score_log = '' | |
this_label_for_this_image = int(output[0]['label']) | |
return {'full': output, 'number': this_label_for_this_image} | |
def get_other(original_image, hunting_time_limit): | |
RANDO = str(time.time()) | |
file_path = 'tester/' + 'generation' + "/" + RANDO + '/' | |
os.makedirs(file_path) | |
fig = plt.figure(figsize=(1, 1)) | |
plt.subplot(1, 1, 0+1) | |
plt.imshow(original_image, cmap='gray') | |
plt.axis('off') | |
plt.savefig(file_path + 'generated_image.png') | |
plt.close() | |
print('[+] done saving generation') | |
print("[-] what digit is this") | |
ret = digit_recognition(file_path) | |
print(ret['full']) | |
print(ret['number']) | |
print("[+]", ret['number']) | |
print("[-] show some most similar numbers") | |
if ret["full"][0]['score'] <= 0.90: | |
print("[!] error in image digit recognition, likely to not find a similar score") | |
sys.exit() | |
gen_filepath = file_path + 'generated_image.png' | |
gen_label = ret['number'] | |
ret_sims = get_sims(gen_filepath, gen_label, file_path, hunting_time_limit) | |
print("[+] done sims") | |
# get the file-Path | |
return (file_path + 'generated_image.png', ret_sims) | |
def generate_and_save_images(model): | |
noise_dim = 100 | |
num_examples_to_generate = 1 | |
seed = tf.random.normal([num_examples_to_generate, noise_dim]) | |
# print(seed) | |
n_samples = 1 | |
# Notice `training` is set to False. | |
# This is so all layers run in inference mode (batchnorm). | |
examples = model(seed, training=False) | |
examples = examples * 255.0 | |
size = ceil(sqrt(n_samples)) | |
digit_images = np.zeros((28*size, 28*size), dtype=float) | |
n = 0 | |
for i in range(size): | |
for j in range(size): | |
if n == n_samples: | |
break | |
digit_images[i* 28 : (i+1)*28, j*28 : (j+1)*28] = examples[n, :, :, 0] | |
n += 1 | |
digit_images = (digit_images/127.5) -1 | |
return digit_images | |
def TextToImage(Prompt,inference_steps, model): | |
model_id = model | |
if 'GAN' in model_id: | |
print("do something else") | |
model = from_pretrained_keras(model) | |
image = generate_and_save_images(model) | |
else: | |
pipe = DiffusionPipeline.from_pretrained(model_id) | |
the_randomness = int(str(time.time())[-1]) | |
print('seed', the_randomness) | |
image = pipe(generator= torch.manual_seed(the_randomness), num_inference_steps=inference_steps).images[0] | |
# pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) | |
# pipe = pipe.to("cpu") | |
prompt = Prompt | |
print(prompt) | |
hunting_time_limit = None | |
if prompt.isnumeric(): | |
hunting_time_limit = abs(int(prompt)) | |
original_image, other_images = get_other(image, hunting_time_limit) | |
the_file = other_images[0] | |
the_rmse = other_images[1] | |
ai_gen = Image.open(open(original_image, 'rb')) | |
training_data = Image.open(open(the_file, 'rb')) | |
another_one = (training_data, "RMSE: " + str(round(the_rmse,5) )) | |
return [ai_gen, another_one] | |
df = pd.DataFrame({ | |
"Model" : ['MNIST-diffusion', 'MNIST-diffusion-oneImage', 'MNIST-GAN', 'MNIST-GAN-noDropout'], | |
"Class (Architecture)" : ['UNet2DModel', 'UNet2DModel', 'Sequential', 'Sequential'], | |
"Dataset Examples" : [60000, 1, 60000, 60000], | |
"Training Loops" : [300, 100000, 90000, 90000], | |
"Notes" : ['Similar architecture as Stable Diffusion, different training data', 'Toy model, purposed to store protected content', 'GANs are not as likely to store protected content', 'less dropout, more copying?'] | |
}) | |
# Applying style to highlight the maximum value in each row | |
styler = df#.style.highlight_max(color = 'lightgreen', axis = 0) | |
with gr.Blocks() as app: | |
interface = gr.Interface(fn=TextToImage, | |
inputs=[gr.Textbox(show_label=True, label='How many seconds to hunt for copies?',), gr.Slider(1, 1000, label='Inference Steps (leave unchanged for default, best is 1000 but it is slow!)', value=10, step=1), gr.Dropdown(modelieo)], | |
outputs=gr.Gallery(label="Generated image", show_label=True, elem_id="gallery", columns=[2], rows=[1], object_fit="contain", height="auto"), | |
# css="#output_image{width: 256px !important; height: 256px !important;}", | |
title='Unconditional Image Generation', | |
) | |
gr.HTML( | |
"<hr>" | |
"<h1><center>Do machine learing models store protected content?</center></h1>" + | |
"<p><center><span style='color: red;'>Enter a time to hunt for copies (seconds), select a model, and hit submit!</center></p>" + | |
"<p><center><strong>These image generation models will give you a 'bespoke' generation ❤ of an <a href='https://paperswithcode.com/dataset/mnist'>MNIST hand-drawn digit<a></p> " + | |
"<p><center>then the program will search in training data (for <i>n</i> seconds) to find similar images: <a href='https://medium.com/@mygreatlearning/rmse-what-does-it-mean-2d446c0b1d0e'>RMSE<a>, lower is more similar</p>" + | |
"<p><a href='https://nathanreitinger.umiacs.io'>@nathanReitinger</a></p>" | |
) | |
gr.Dataframe(styler) | |
app.queue().launch() | |
# interface.launch(share=True) | |