File size: 9,076 Bytes
460dbe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
176a8a6
 
 
 
460dbe4
 
 
 
 
 
 
 
 
 
 
 
595a64b
460dbe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
176a8a6
 
460dbe4
 
 
 
 
 
 
 
029669d
460dbe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
176a8a6
 
 
 
 
 
 
 
460dbe4
 
 
 
 
 
 
 
344dcb5
 
 
 
 
1dada23
 
460dbe4
 
 
 
 
dba1334
460dbe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
176a8a6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# Basic example for doing model-in-the-loop dynamic adversarial data collection
# using Gradio Blocks.
import os
import random
import uuid
from urllib.parse import parse_qs
import gradio as gr
import requests
from transformers import pipeline, Conversation
from huggingface_hub import Repository
from dotenv import load_dotenv
from pathlib import Path
import json
from utils import force_git_push
import threading

#langchain imports
from langchain import HuggingFacePipeline, LLMChain, PromptTemplate
from langchain.chains.conversation.memory import ConversationalBufferWindowMemory

# These variables are for storing the mturk HITs in a Hugging Face dataset.
if Path(".env").is_file():
    load_dotenv(".env")
DATASET_REPO_URL = os.getenv("DATASET_REPO_URL")
FORCE_PUSH = os.getenv("FORCE_PUSH")
HF_TOKEN = os.getenv("HF_TOKEN")
DATA_FILENAME = "data.jsonl"
DATA_FILE = os.path.join("data", DATA_FILENAME)
repo = Repository(
    local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
)

TOTAL_CNT = 3 # How many user inputs per HIT

# This function pushes the HIT data written in data.jsonl to our Hugging Face
# dataset every minute. Adjust the frequency to suit your needs.
PUSH_FREQUENCY = 60
def asynchronous_push(f_stop):
    if repo.is_repo_clean():
        print("Repo currently clean. Ignoring push_to_hub")
    else:
        repo.git_add(auto_lfs_track=True)
        repo.git_commit("Auto commit by space")
        if FORCE_PUSH == "yes":
            force_git_push(repo)
        else:
            repo.git_push()
    if not f_stop.is_set():
        # call again in 60 seconds
        threading.Timer(PUSH_FREQUENCY, asynchronous_push, [f_stop]).start()

f_stop = threading.Event()
asynchronous_push(f_stop)

# Now let's run the app!
pipe = pipeline(model="google/flan-t5-xl-qa", tokenizer="google/flan-t5-xl", task="text2text-generation")
chatbot = HuggingFacePipeline(pipeline=pipe)

demo = gr.Blocks()

with demo:
    dummy = gr.Textbox(visible=False)  # dummy for passing assignmentId

    # We keep track of state as a JSON
    state_dict = {
        "conversation_id": str(uuid.uuid4()),
        "assignmentId": "",
        "cnt": 0, "data": [],
        "past_user_inputs": [],
        "generated_responses": [],
        "response_1": "",
        "response_2": "",
        }
    state = gr.JSON(state_dict, visible=False)

    gr.Markdown("# RLHF Interface")
    gr.Markdown("Choose the best model output")

    state_display = gr.Markdown(f"Your messages: 0/{TOTAL_CNT}")

    # Generate model prediction
    # Default model: distilbert-base-uncased-finetuned-sst-2-english
    def _predict(txt, state):
        # conversation_1 = Conversation(past_user_inputs=state["past_user_inputs"].copy(), generated_responses=state["generated_responses"].copy())
        # conversation_2 = Conversation(past_user_inputs=state["past_user_inputs"].copy(), generated_responses=state["generated_responses"].copy())
        # conversation_1.add_user_input(txt)
        # conversation_2.add_user_input(txt)
        conversation_1 = chatbot(txt, do_sample=True, seed=420)
        conversation_2 = chatbot(txt, do_sample=True, seed=69)
        response_1 = conversation_1.generated_text[-1]
        response_2 = conversation_2.generated_text[-1]

        state["cnt"] += 1

        new_state_md = f"Inputs remaining in HIT: {state['cnt']}/{TOTAL_CNT}"

        state["data"].append({"cnt": state["cnt"], "text": txt, "response_1": response_1, "response_2": response_2})
        state["past_user_inputs"].append(txt)

        past_conversation_string = "<br />".join(["<br />".join(["πŸ˜ƒ: " + user_input, "πŸ€–: " + model_response]) for user_input, model_response in zip(state["past_user_inputs"], state["generated_responses"] + [""])])
        return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True, choices=[response_1, response_2], interactive=True, value=response_1), gr.update(value=past_conversation_string), state, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), new_state_md, dummy

    def _select_response(selected_response, state, dummy):
        done = state["cnt"] == TOTAL_CNT
        state["generated_responses"].append(selected_response)
        state["data"][-1]["selected_response"] = selected_response
        if state["cnt"] == TOTAL_CNT:
            # Write the HIT data to our local dataset because the worker has
            # submitted everything now.
            with open(DATA_FILE, "a") as jsonlfile:
                json_data_with_assignment_id =\
                    [json.dumps(dict({"assignmentId": state["assignmentId"], "conversation_id": state["conversation_id"]}, **datum)) for datum in state["data"]]
                jsonlfile.write("\n".join(json_data_with_assignment_id) + "\n")
        toggle_example_submit = gr.update(visible=not done)
        past_conversation_string = "<br />".join(["<br />".join(["πŸ˜ƒ: " + user_input, "πŸ€–: " + model_response]) for user_input, model_response in zip(state["past_user_inputs"], state["generated_responses"])])
        query = parse_qs(dummy[1:])
        if "assignmentId" in query and query["assignmentId"][0] != "ASSIGNMENT_ID_NOT_AVAILABLE":
            # It seems that someone is using this app on mturk. We need to
            # store the assignmentId in the state before submit_hit_button
            # is clicked. We can do this here in _predict. We need to save the
            # assignmentId so that the turker can get credit for their HIT.
            state["assignmentId"] = query["assignmentId"][0]
            toggle_final_submit = gr.update(visible=done)
            toggle_final_submit_preview = gr.update(visible=False)
        else:
            toggle_final_submit_preview = gr.update(visible=done)
            toggle_final_submit = gr.update(visible=False)
        text_input = gr.update(visible=False) if done else gr.update(visible=True)
        return gr.update(visible=False), gr.update(visible=True), text_input, gr.update(visible=False), state, gr.update(value=past_conversation_string), toggle_example_submit, toggle_final_submit, toggle_final_submit_preview,

    # Input fields
    past_conversation = gr.Markdown()
    text_input = gr.Textbox(placeholder="Enter a statement", show_label=False)
    select_response = gr.Radio(choices=[None, None], visible=False, label="Choose the best response")
    select_response_button = gr.Button("Select Response", visible=False)
    with gr.Column() as example_submit:
        submit_ex_button = gr.Button("Submit")
    with gr.Column(visible=False) as final_submit:
        submit_hit_button = gr.Button("Submit HIT")
    with gr.Column(visible=False) as final_submit_preview:
        submit_hit_button_preview = gr.Button("Submit Work (preview mode; no mturk HIT credit, but your examples will still be stored)")

    # Button event handlers
    get_window_location_search_js = """
        function(text_input, label_input, state, dummy) {
            return [text_input, label_input, state, window.location.search];
        }
        """

    select_response_button.click(
        _select_response,
        inputs=[select_response, state, dummy],
        outputs=[select_response, example_submit, text_input, select_response_button, state, past_conversation, example_submit, final_submit, final_submit_preview],
        _js=get_window_location_search_js,
    )

    submit_ex_button.click(
        _predict,
        inputs=[text_input, state],
        outputs=[text_input, select_response_button, select_response, past_conversation, state, example_submit, final_submit, final_submit_preview, state_display, dummy],
        _js=get_window_location_search_js,
    )

    post_hit_js = """
        function(state) {
            // If there is an assignmentId, then the submitter is on mturk
            // and has accepted the HIT. So, we need to submit their HIT.
            const form = document.createElement('form');
            form.action = 'https://workersandbox.mturk.com/mturk/externalSubmit';
            form.method = 'post';
            for (const key in state) {
                const hiddenField = document.createElement('input');
                hiddenField.type = 'hidden';
                hiddenField.name = key;
                hiddenField.value = state[key];
                form.appendChild(hiddenField);
            };
            document.body.appendChild(form);
            form.submit();
            return state;
        }
        """

    submit_hit_button.click(
        lambda state: state,
        inputs=[state],
        outputs=[state],
        _js=post_hit_js,
    )

    refresh_app_js = """
        function(state) {
            // The following line here loads the app again so the user can
            // enter in another preview-mode "HIT".
            window.location.href = window.location.href;
            return state;
        }
        """

    submit_hit_button_preview.click(
        lambda state: state,
        inputs=[state],
        outputs=[state],
        _js=refresh_app_js,
    )

demo.launch(share=True)