Spaces:
Running
Running
import argparse | |
import requests | |
import xml.etree.ElementTree as ET | |
import pickle | |
import re | |
import os | |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' | |
import tensorflow as tf | |
from nltk.corpus import stopwords | |
from nltk.tokenize import word_tokenize | |
import spacy | |
import numpy as np | |
import streamlit as st | |
from tensorflow.keras.preprocessing.sequence import pad_sequences | |
STOPWORDS = set(stopwords.words('english')) | |
max_length = 300 | |
trunc_type = 'post' | |
padding_type = 'post' | |
from typing import ( | |
Dict, | |
List, | |
Tuple, | |
Set, | |
Optional, | |
Any, | |
Union, | |
) | |
# Standardize the abstract by replacing all named entities with their entity label. | |
# Eg. 3 patients reported at a clinic in England --> CARDINAL patients reported at a clinic in GPE | |
# expects the spaCy model en_core_web_lg as input | |
def standardizeAbstract(abstract:str, nlp:Any) -> str: | |
doc = nlp(abstract) | |
newAbstract = abstract | |
for e in reversed(doc.ents): | |
if e.label_ in {'PERCENT','CARDINAL','GPE','LOC','DATE','TIME','QUANTITY','ORDINAL'}: | |
start = e.start_char | |
end = start + len(e.text) | |
newAbstract = newAbstract[:start] + e.label_ + newAbstract[end:] | |
return newAbstract | |
# Same as above but replaces biomedical named entities from scispaCy models | |
# Expects as input en_ner_bc5cdr_md and en_ner_bionlp13cg_md | |
def standardizeSciTerms(abstract:str, nlpSci:Any, nlpSci2:Any) -> str: | |
doc = nlpSci(abstract) | |
newAbstract = abstract | |
for e in reversed(doc.ents): | |
start = e.start_char | |
end = start + len(e.text) | |
newAbstract = newAbstract[:start] + e.label_ + newAbstract[end:] | |
doc = nlpSci2(newAbstract) | |
for e in reversed(doc.ents): | |
start = e.start_char | |
end = start + len(e.text) | |
newAbstract = newAbstract[:start] + e.label_ + newAbstract[end:] | |
return newAbstract | |
# Prepare model | |
#nlp, nlpSci, nlpSci2, classify_model, classify_tokenizer= init_classify_model() | |
def init_classify_model(model:str='LSTM_RNN_Model') -> Tuple[Any,Any,Any,Any,Any]: | |
#Load spaCy models | |
nlp = spacy.load('en_core_web_lg') | |
nlpSci = spacy.load("en_ner_bc5cdr_md") | |
nlpSci2 = spacy.load('en_ner_bionlp13cg_md') | |
# load the tokenizer | |
with open('tokenizer.pickle', 'rb') as handle: | |
classify_tokenizer = pickle.load(handle) | |
# load the model | |
classify_model = tf.keras.models.load_model(model) | |
return (nlp, nlpSci, nlpSci2, classify_model, classify_tokenizer) | |
#Gets abstract and title (concatenated) from EBI API | |
def PMID_getAb(PMID:Union[int,str]) -> str: | |
url = 'https://www.ebi.ac.uk/europepmc/webservices/rest/search?query=EXT_ID:'+str(PMID)+'&resulttype=core' | |
r = requests.get(url) | |
root = ET.fromstring(r.content) | |
titles = [title.text for title in root.iter('title')] | |
abstracts = [abstract.text for abstract in root.iter('abstractText')] | |
if len(abstracts) > 0 and len(abstracts[0])>5: | |
return titles[0]+' '+abstracts[0] | |
else: | |
return '' | |
def search_Pubmed_API(searchterm_list:Union[List[str],str], maxResults:int) -> Dict[str,str]: #returns a dictionary of {pmids:abstracts} | |
print('search_Pubmed_API is DEPRECATED. UTILIZE search_NCBI_API for NCBI ENTREZ API results. Utilize search_getAbs for most comprehensive results.') | |
return search_NCBI_API(searchterm_list, maxResults) | |
## DEPRECATED, use search_getAbs for more comprehensive results | |
def search_NCBI_API(searchterm_list:Union[List[str],str], maxResults:int) -> Dict[str,str]: #returns a dictionary of {pmids:abstracts} | |
print('search_NCBI_API is DEPRECATED. Utilize search_getAbs for most comprehensive results.') | |
pmid_to_abs = {} | |
i = 0 | |
#type validation, allows string or list input | |
if type(searchterm_list)!=list: | |
if type(searchterm_list)==str: | |
searchterm_list = [searchterm_list] | |
else: | |
searchterm_list = list(searchterm_list) | |
#gathers pmids into a set first | |
for dz in searchterm_list: | |
# get results from searching for disease name through PubMed API | |
term = '' | |
dz_words = dz.split() | |
for word in dz_words: | |
term += word + '%20' | |
query = term[:-3] | |
url = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term='+query | |
r = requests.get(url) | |
root = ET.fromstring(r.content) | |
# loop over resulting articles | |
for result in root.iter('IdList'): | |
pmids = [pmid.text for pmid in result.iter('Id')] | |
if i >= maxResults: | |
break | |
for pmid in pmids: | |
if pmid not in pmid_to_abs.keys(): | |
abstract = PMID_getAb(pmid) | |
if len(abstract)>5: | |
pmid_to_abs[pmid]=abstract | |
i+=1 | |
return pmid_to_abs | |
## DEPRECATED, use search_getAbs for more comprehensive results | |
# get results from searching for disease name through EBI API | |
def search_EBI_API(searchterm_list:Union[List[str],str], maxResults:int) -> Dict[str,str]: #returns a dictionary of {pmids:abstracts} | |
print('DEPRECATED. Utilize search_getAbs for most comprehensive results.') | |
pmids_abs = {} | |
i = 0 | |
#type validation, allows string or list input | |
if type(searchterm_list)!=list: | |
if type(searchterm_list)==str: | |
searchterm_list = [searchterm_list] | |
else: | |
searchterm_list = list(searchterm_list) | |
#gathers pmids into a set first | |
for dz in searchterm_list: | |
if i >= maxResults: | |
break | |
term = '' | |
dz_words = dz.split() | |
for word in dz_words: | |
term += word + '%20' | |
query = term[:-3] | |
url = 'https://www.ebi.ac.uk/europepmc/webservices/rest/search?query='+query+'&resulttype=core' | |
r = requests.get(url) | |
root = ET.fromstring(r.content) | |
# loop over resulting articles | |
for result in root.iter('result'): | |
if i >= maxResults: | |
break | |
pmids = [pmid.text for pmid in result.iter('id')] | |
if len(pmids) > 0: | |
pmid = pmids[0] | |
if pmid[0].isdigit(): | |
abstracts = [abstract.text for abstract in result.iter('abstractText')] | |
titles = [title.text for title in result.iter('title')] | |
if len(abstracts) > 0:# and len(abstracts[0])>5: | |
pmids_abs[pmid] = titles[0]+' '+abstracts[0] | |
i+=1 | |
return pmids_abs | |
## This is the main, most comprehensive search_term function, it can take in a search term or a list of search terms and output a dictionary of {pmids:abstracts} | |
## Gets results from searching through both PubMed and EBI search term APIs, also makes use of the EBI API for PMIDs. | |
## EBI API and PubMed API give different results | |
# This makes n+2 API calls where n<=maxResults, which is slow | |
# There is a way to optimize by gathering abstracts from the EBI API when also getting pmids but did not pursue due to time constraints | |
# Filtering can be | |
# 'strict' - must have some exact match to at leastone of search terms/phrases in text) | |
# 'lenient' - part of the abstract must match at least one word in the search term phrases. | |
# 'none' | |
def search_getAbs(searchterm_list:Union[List[str],List[int],str], maxResults:int, filtering:str) -> Dict[str,str]: | |
#set of all pmids | |
pmids = set() | |
#dictionary {pmid:abstract} | |
pmid_abs = {} | |
#type validation, allows string or list input | |
if type(searchterm_list)!=list: | |
if type(searchterm_list)==str: | |
searchterm_list = [searchterm_list] | |
else: | |
searchterm_list = list(searchterm_list) | |
#gathers pmids into a set first | |
for dz in searchterm_list: | |
term = '' | |
dz_words = dz.split() | |
for word in dz_words: | |
term += word + '%20' | |
query = term[:-3] | |
## get pmid results from searching for disease name through PubMed API | |
url = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term='+query | |
r = requests.get(url) | |
root = ET.fromstring(r.content) | |
# loop over resulting articles | |
for result in root.iter('IdList'): | |
if len(pmids) >= maxResults: | |
break | |
pmidlist = [pmid.text for pmid in result.iter('Id')] | |
pmids.update(pmidlist) | |
## get results from searching for disease name through EBI API | |
url = 'https://www.ebi.ac.uk/europepmc/webservices/rest/search?query='+query+'&resulttype=core' | |
r = requests.get(url) | |
root = ET.fromstring(r.content) | |
# loop over resulting articles | |
for result in root.iter('result'): | |
if len(pmids) >= maxResults: | |
break | |
pmidlist = [pmid.text for pmid in result.iter('id')] | |
#can also gather abstract and title here but for some reason did not work as intended the first time. Optimize in future versions to reduce latency. | |
if len(pmidlist) > 0: | |
pmid = pmidlist[0] | |
if pmid[0].isdigit(): | |
pmids.add(pmid) | |
#Construct sets for filtering (right before adding abstract to pmid_abs | |
# The purpose of this is to do a second check of the abstracts, filters out any abstracts unrelated to the search terms | |
#if filtering is 'lenient' or default | |
if filtering !='none' or filtering !='strict': | |
filter_terms = set(searchterm_list).union(set(str(re.sub(',','',' '.join(searchterm_list))).split()).difference(STOPWORDS)) | |
''' | |
# The above is equivalent to this but uses less memory and may be faster: | |
#create a single string of the terms within the searchterm_list | |
joined = ' '.join(searchterm_list) | |
#remove commas | |
comma_gone = re.sub(',','',joined) | |
#split the string into list of words and convert list into a Pythonic set | |
split = set(comma_gone.split()) | |
#remove the STOPWORDS from the set of key words | |
key_words = split.difference(STOPWORDS) | |
#create a new set of the list members in searchterm_list | |
search_set = set(searchterm_list) | |
#join the two sets | |
terms = search_set.union(key_words) | |
#if any word(s) in the abstract intersect with any of these terms then the abstract is good to go. | |
''' | |
## get abstracts from EBI PMID API and output a dictionary | |
for pmid in pmids: | |
abstract = PMID_getAb(pmid) | |
if len(abstract)>5: | |
#do filtering here | |
if filtering == 'strict': | |
uncased_ab = abstract.lower() | |
for term in searchterm_list: | |
if term.lower() in uncased_ab: | |
pmid_abs[pmid] = abstract | |
break | |
elif filtering =='none': | |
pmid_abs[pmid] = abstract | |
#Default filtering is 'lenient'. | |
else: | |
#Else and if are separated for readability and to better understand logical flow. | |
if set(filter_terms).intersection(set(word_tokenize(abstract))): | |
pmid_abs[pmid] = abstract | |
print('Found',len(pmids),'PMIDs. Gathered',len(pmid_abs),'Relevant Abstracts.') | |
return pmid_abs | |
#This is a streamlit version of search_getAbs. Refer to search_getAbs for documentation | |
def streamlit_getAbs(searchterm_list:Union[List[str],List[int],str], maxResults:int, filtering:str) -> Dict[str,str]: | |
pmids = set() | |
pmid_abs = {} | |
if type(searchterm_list)!=list: | |
if type(searchterm_list)==str: | |
searchterm_list = [searchterm_list] | |
else: | |
searchterm_list = list(searchterm_list) | |
#maxResults is multiplied by a little bit because sometimes the results returned is more than maxResults | |
percent_by_step = 1/(maxResults*1.05) | |
with st.spinner("Gathering PubMed IDs..."): | |
PMIDs_bar = st.progress(0) | |
for dz in searchterm_list: | |
term = '' | |
dz_words = dz.split() | |
for word in dz_words: | |
term += word + '%20' | |
query = term[:-3] | |
url = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term='+query | |
r = requests.get(url) | |
root = ET.fromstring(r.content) | |
for result in root.iter('IdList'): | |
if len(pmids) >= maxResults: | |
break | |
pmidlist = [pmid.text for pmid in result.iter('Id')] | |
pmids.update(pmidlist) | |
PMIDs_bar.progress(min(round(len(pmids)*percent_by_step,1),1.0)) | |
url = 'https://www.ebi.ac.uk/europepmc/webservices/rest/search?query='+query+'&resulttype=core' | |
r = requests.get(url) | |
root = ET.fromstring(r.content) | |
for result in root.iter('result'): | |
if len(pmids) >= maxResults: | |
break | |
pmidlist = [pmid.text for pmid in result.iter('id')] | |
if len(pmidlist) > 0: | |
pmid = pmidlist[0] | |
if pmid[0].isdigit(): | |
pmids.add(pmid) | |
PMIDs_bar.progress(min(round(len(pmids)*percent_by_step,1),1.0)) | |
PMIDs_bar.empty() | |
with st.spinner("Found "+str(len(pmids))+" PMIDs. Gathering Abstracts and Filtering..."): | |
abstracts_bar = st.progress(0) | |
percent_by_step = 1/(maxResults) | |
if filtering !='none' or filtering !='strict': | |
filter_terms = set(searchterm_list).union(set(str(re.sub(',','',' '.join(searchterm_list))).split()).difference(STOPWORDS)) | |
for pmid in pmids: | |
abstract = PMID_getAb(pmid) | |
if len(abstract)>5: | |
#do filtering here | |
if filtering == 'strict': | |
uncased_ab = abstract.lower() | |
for term in searchterm_list: | |
if term.lower() in uncased_ab: | |
pmid_abs[pmid] = abstract | |
abstracts_bar.progress(min(round(len(pmid_abs)*percent_by_step,1),1.0)) | |
break | |
elif filtering =='none': | |
pmid_abs[pmid] = abstract | |
abstracts_bar.progress(min(round(len(pmid_abs)*percent_by_step,1),1.0)) | |
#Default filtering is 'lenient'. | |
else: | |
#Else and if are separated for readability and to better understand logical flow. | |
if set(filter_terms).intersection(set(word_tokenize(abstract))): | |
pmid_abs[pmid] = abstract | |
abstracts_bar.progress(min(round(len(pmid_abs)*percent_by_step,1),1.0)) | |
abstracts_bar.empty() | |
st.success('Found '+str(len(pmids))+' PMIDs. Gathered '+str(len(pmid_abs))+' Relevant Abstracts. Classifying and extracting epidemiology information...') | |
return pmid_abs, (len(pmids),len(pmid_abs)) | |
# Generate predictions for a PubMed Id | |
# nlp: en_core_web_lg | |
# nlpSci: en_ner_bc5cdr_md | |
# nlpSci2: en_ner_bionlp13cg_md | |
# Defaults to load my_model_orphanet_final, the most up-to-date version of the classification model, | |
# but can also be run on any other tf.keras model | |
#This was originally getPredictions | |
def getPMIDPredictions(pmid:Union[str,int], classify_model_vars:Tuple[Any,Any,Any,Any,Any]) -> Tuple[str,float,bool]: | |
nlp, nlpSci, nlpSci2, classify_model, classify_tokenizer = classify_model_vars | |
abstract = PMID_getAb(pmid) | |
if len(abstract)>5: | |
# remove stopwords | |
for word in STOPWORDS: | |
token = ' ' + word + ' ' | |
abstract = abstract.replace(token, ' ') | |
abstract = abstract.replace(' ', ' ') | |
# preprocess abstract | |
abstract_standard = [standardizeAbstract(standardizeSciTerms(abstract, nlpSci, nlpSci2), nlp)] | |
sequence = classify_tokenizer.texts_to_sequences(abstract_standard) | |
padded = pad_sequences(sequence, maxlen=max_length, padding=padding_type, truncating=trunc_type) | |
y_pred1 = classify_model.predict(padded) # generate prediction | |
y_pred = np.argmax(y_pred1, axis=1) # get binary prediction | |
prob = y_pred1[0][1] | |
if y_pred == 1: | |
isEpi = True | |
else: | |
isEpi = False | |
return abstract, prob, isEpi | |
else: | |
return abstract, 0.0, False | |
def getTextPredictions(abstract:str, classify_model_vars:Tuple[Any,Any,Any,Any,Any]) -> Tuple[float,bool]: | |
nlp, nlpSci, nlpSci2, classify_model, classify_tokenizer = classify_model_vars | |
if len(abstract)>5: | |
# remove stopwords | |
for word in STOPWORDS: | |
token = ' ' + word + ' ' | |
abstract = abstract.replace(token, ' ') | |
abstract = abstract.replace(' ', ' ') | |
# preprocess abstract | |
abstract_standard = [standardizeAbstract(standardizeSciTerms(abstract, nlpSci, nlpSci2), nlp)] | |
sequence = classify_tokenizer.texts_to_sequences(abstract_standard) | |
padded = pad_sequences(sequence, maxlen=max_length, padding=padding_type, truncating=trunc_type) | |
y_pred1 = classify_model.predict(padded) # generate prediction | |
y_pred = np.argmax(y_pred1, axis=1) # get binary prediction | |
prob = y_pred1[0][1] | |
if y_pred == 1: | |
isEpi = True | |
else: | |
isEpi = False | |
return prob, isEpi | |
else: | |
return 0.0, False | |
if __name__ == '__main__': | |
print('Loading 5 NLP models...') | |
classify_model_vars= init_classify_model() | |
print('All models loaded.') | |
pmid = input('\nEnter PubMed PMID (or DONE): ') | |
while pmid != 'DONE': | |
abstract, prob, isEpi = getPredictions(pmid, classify_model_vars) | |
print(abstract, prob, isEpi) | |
pmid = input('\nEnter PubMed PMID (or DONE): ') |