File size: 10,287 Bytes
753dcdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b061f17
 
 
 
 
 
753dcdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be70f8e
 
753dcdd
be70f8e
753dcdd
 
1f02a81
be70f8e
1f02a81
be70f8e
1f02a81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be70f8e
 
 
 
753dcdd
1f02a81
 
 
 
 
 
 
 
 
 
 
 
753dcdd
1f02a81
753dcdd
1f02a81
 
753dcdd
 
 
 
 
1f02a81
 
 
753dcdd
1f02a81
 
 
 
 
 
 
 
 
 
 
 
 
 
be70f8e
 
 
 
1f02a81
753dcdd
 
1f02a81
 
 
 
 
 
 
 
 
 
 
 
753dcdd
 
1f02a81
 
 
 
753dcdd
 
1f02a81
 
 
753dcdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import os
import random
import sys
from typing import Sequence, Mapping, Any, Union
import torch
import gradio as gr
from huggingface_hub import hf_hub_download
import spaces
from comfy import model_management

hf_hub_download(repo_id="black-forest-labs/FLUX.1-Redux-dev", filename="flux1-redux-dev.safetensors", local_dir="models/style_models")
hf_hub_download(repo_id="black-forest-labs/FLUX.1-Depth-dev", filename="flux1-depth-dev.safetensors", local_dir="models/diffusion_models")
hf_hub_download(repo_id="Comfy-Org/sigclip_vision_384", filename="sigclip_vision_patch14_384.safetensors", local_dir="models/clip_vision")
hf_hub_download(repo_id="Kijai/DepthAnythingV2-safetensors", filename="depth_anything_v2_vitl_fp32.safetensors", local_dir="models/depthanything")
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", filename="ae.safetensors", local_dir="models/vae/FLUX1")
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="clip_l.safetensors", local_dir="models/text_encoders")
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="t5xxl_fp16.safetensors", local_dir="models/text_encoders/t5")

def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
    """Returns the value at the given index of a sequence or mapping.
    If the object is a sequence (like list or string), returns the value at the given index.
    If the object is a mapping (like a dictionary), returns the value at the index-th key.
    Some return a dictionary, in these cases, we look for the "results" key
    Args:
        obj (Union[Sequence, Mapping]): The object to retrieve the value from.
        index (int): The index of the value to retrieve.
    Returns:
        Any: The value at the given index.
    Raises:
        IndexError: If the index is out of bounds for the object and the object is not a mapping.
    """
    try:
        return obj[index]
    except KeyError:
        return obj["result"][index]


def find_path(name: str, path: str = None) -> str:
    """
    Recursively looks at parent folders starting from the given path until it finds the given name.
    Returns the path as a Path object if found, or None otherwise.
    """
    # If no path is given, use the current working directory
    if path is None:
        path = os.getcwd()

    # Check if the current directory contains the name
    if name in os.listdir(path):
        path_name = os.path.join(path, name)
        print(f"{name} found: {path_name}")
        return path_name

    # Get the parent directory
    parent_directory = os.path.dirname(path)

    # If the parent directory is the same as the current directory, we've reached the root and stop the search
    if parent_directory == path:
        return None

    # Recursively call the function with the parent directory
    return find_path(name, parent_directory)


def add_comfyui_directory_to_sys_path() -> None:
    """
    Add 'ComfyUI' to the sys.path
    """
    comfyui_path = find_path("ComfyUI")
    if comfyui_path is not None and os.path.isdir(comfyui_path):
        sys.path.append(comfyui_path)
        print(f"'{comfyui_path}' added to sys.path")


def add_extra_model_paths() -> None:
    """
    Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path.
    """
    # Ensure custom_nodes directory exists
    custom_nodes_path = os.path.join(os.getcwd(), "custom_nodes")
    if not os.path.exists(custom_nodes_path):
        os.makedirs(custom_nodes_path)
        print(f"Created custom_nodes directory at: {custom_nodes_path}")

    try:
        from main import load_extra_path_config
    except ImportError:
        print(
            "Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead."
        )
        from utils.extra_config import load_extra_path_config

    extra_model_paths = find_path("extra_model_paths.yaml")

    if extra_model_paths is not None:
        load_extra_path_config(extra_model_paths)
    else:
        print("Could not find the extra_model_paths config file.")


add_comfyui_directory_to_sys_path()
add_extra_model_paths()

def import_custom_nodes() -> None:
    """Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS
    This function sets up a new asyncio event loop, initializes the PromptServer,
    creates a PromptQueue, and initializes the custom nodes.
    """
    import asyncio
    import execution
    from nodes import init_extra_nodes
    import server

    # Creating a new event loop and setting it as the default loop
    loop = asyncio.new_event_loop()
    asyncio.set_event_loop(loop)

    # Creating an instance of PromptServer with the loop
    server_instance = server.PromptServer(loop)
    execution.PromptQueue(server_instance)

    # Initializing custom nodes
    init_extra_nodes()

# Initialize nodes before using them
import_custom_nodes()

# Now import and use NODE_CLASS_MAPPINGS
from nodes import NODE_CLASS_MAPPINGS

# Create instances of the nodes we'll use
try:
    # Load required models
    dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
    vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
    unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]()
    clipvisionloader = NODE_CLASS_MAPPINGS["CLIPVisionLoader"]()
    stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]()
    
    # Image processing nodes
    loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
    imagescale = NODE_CLASS_MAPPINGS["ImageScale"]()
    vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
    vaeencode = NODE_CLASS_MAPPINGS["VAEEncode"]()
    saveimage = NODE_CLASS_MAPPINGS["SaveImage"]()
    
    # Conditioning and sampling nodes
    cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
    ksampler = NODE_CLASS_MAPPINGS["KSampler"]()
    emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
    
except KeyError as e:
    print(f"Error: Could not find node {e} in NODE_CLASS_MAPPINGS")
    print("Available nodes:", list(NODE_CLASS_MAPPINGS.keys()))
    raise

# Load all the models that need a safetensors file
model_loaders = [
    dualcliploader.load_clip(
        clip_name1="t5/t5xxl_fp16.safetensors",
        clip_name2="clip_l.safetensors",
        type="flux",
    ),
    vaeloader.load_vae("vae/FLUX1/ae.safetensors"),
    unetloader.load_unet("diffusion_models/flux1-depth-dev.safetensors"),
    clipvisionloader.load_clip("clip_vision/sigclip_vision_patch14_384.safetensors"),
    stylemodelloader.load_style_model("style_models/flux1-redux-dev.safetensors")
]

# Check which models are valid
valid_models = [
    model for model in model_loaders
    if model is not None and len(model) > 0
]

@spaces.GPU(duration=60)
def generate_image(prompt, structure_image, style_image, depth_strength, style_strength):
    with torch.inference_mode():
        # Set up image dimensions
        width = 1024
        height = 1024
        
        # Load and process the input images
        loaded_structure = loadimage.load_image(structure_image)
        loaded_style = loadimage.load_image(style_image)
        
        # Scale images if needed
        scaled_structure = imagescale.upscale(loaded_structure, width, height, "lanczos", "center")
        scaled_style = imagescale.upscale(loaded_style, width, height, "lanczos", "center")
        
        # Create empty latent
        latent = emptylatentimage.generate(width, height, 1)
        
        # Encode the prompt
        conditioning = cliptextencode.encode(
            clip=get_value_at_index(dualcliploader.load_clip(
                clip_name1="t5/t5xxl_fp16.safetensors",
                clip_name2="clip_l.safetensors",
                type="flux",
            ), 0),
            text=prompt
        )
        
        # Sample the image
        sampled = ksampler.sample(
            model=get_value_at_index(unetloader.load_unet("diffusion_models/flux1-depth-dev.safetensors"), 0),
            positive=conditioning,
            negative=None,
            latent=latent,
            seed=random.randint(1, 2**32),
            steps=20,
            cfg=7.5,
            sampler_name="euler",
            scheduler="normal",
            denoise=1.0,
        )
        
        # Decode the latent to image
        decoded = vaedecode.decode(
            samples=sampled,
            vae=get_value_at_index(vaeloader.load_vae("vae/FLUX1/ae.safetensors"), 0)
        )
        
        # Save the final image
        saved = saveimage.save_images(decoded)
        return saved

if __name__ == "__main__":
    # Comment out the main() call
    
    # Start your Gradio app
    with gr.Blocks() as app:
        # Add a title
        gr.Markdown("# FLUX Style Shaping")

        with gr.Row():
            with gr.Column():
                # Add an input
                prompt_input = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...")
                # Add a `Row` to include the groups side by side 
                with gr.Row():
                    # First group includes structure image and depth strength
                    with gr.Group():
                        structure_image = gr.Image(label="Structure Image", type="filepath")
                        depth_strength = gr.Slider(minimum=0, maximum=50, value=15, label="Depth Strength")
                    # Second group includes style image and style strength
                    with gr.Group():
                        style_image = gr.Image(label="Style Image", type="filepath")
                        style_strength = gr.Slider(minimum=0, maximum=1, value=0.5, label="Style Strength")
                
                # The generate button
                generate_btn = gr.Button("Generate")
            
            with gr.Column():
                # The output image
                output_image = gr.Image(label="Generated Image")

            # When clicking the button, it will trigger the `generate_image` function, with the respective inputs
            # and the output an image
            generate_btn.click(
                fn=generate_image,
                inputs=[prompt_input, structure_image, style_image, depth_strength, style_strength],
                outputs=[output_image]
            )
        app.launch(share=True)