Spaces:
Runtime error
Runtime error
File size: 10,287 Bytes
753dcdd b061f17 753dcdd be70f8e 753dcdd be70f8e 753dcdd 1f02a81 be70f8e 1f02a81 be70f8e 1f02a81 be70f8e 753dcdd 1f02a81 753dcdd 1f02a81 753dcdd 1f02a81 753dcdd 1f02a81 753dcdd 1f02a81 be70f8e 1f02a81 753dcdd 1f02a81 753dcdd 1f02a81 753dcdd 1f02a81 753dcdd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import os
import random
import sys
from typing import Sequence, Mapping, Any, Union
import torch
import gradio as gr
from huggingface_hub import hf_hub_download
import spaces
from comfy import model_management
hf_hub_download(repo_id="black-forest-labs/FLUX.1-Redux-dev", filename="flux1-redux-dev.safetensors", local_dir="models/style_models")
hf_hub_download(repo_id="black-forest-labs/FLUX.1-Depth-dev", filename="flux1-depth-dev.safetensors", local_dir="models/diffusion_models")
hf_hub_download(repo_id="Comfy-Org/sigclip_vision_384", filename="sigclip_vision_patch14_384.safetensors", local_dir="models/clip_vision")
hf_hub_download(repo_id="Kijai/DepthAnythingV2-safetensors", filename="depth_anything_v2_vitl_fp32.safetensors", local_dir="models/depthanything")
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", filename="ae.safetensors", local_dir="models/vae/FLUX1")
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="clip_l.safetensors", local_dir="models/text_encoders")
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="t5xxl_fp16.safetensors", local_dir="models/text_encoders/t5")
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
"""Returns the value at the given index of a sequence or mapping.
If the object is a sequence (like list or string), returns the value at the given index.
If the object is a mapping (like a dictionary), returns the value at the index-th key.
Some return a dictionary, in these cases, we look for the "results" key
Args:
obj (Union[Sequence, Mapping]): The object to retrieve the value from.
index (int): The index of the value to retrieve.
Returns:
Any: The value at the given index.
Raises:
IndexError: If the index is out of bounds for the object and the object is not a mapping.
"""
try:
return obj[index]
except KeyError:
return obj["result"][index]
def find_path(name: str, path: str = None) -> str:
"""
Recursively looks at parent folders starting from the given path until it finds the given name.
Returns the path as a Path object if found, or None otherwise.
"""
# If no path is given, use the current working directory
if path is None:
path = os.getcwd()
# Check if the current directory contains the name
if name in os.listdir(path):
path_name = os.path.join(path, name)
print(f"{name} found: {path_name}")
return path_name
# Get the parent directory
parent_directory = os.path.dirname(path)
# If the parent directory is the same as the current directory, we've reached the root and stop the search
if parent_directory == path:
return None
# Recursively call the function with the parent directory
return find_path(name, parent_directory)
def add_comfyui_directory_to_sys_path() -> None:
"""
Add 'ComfyUI' to the sys.path
"""
comfyui_path = find_path("ComfyUI")
if comfyui_path is not None and os.path.isdir(comfyui_path):
sys.path.append(comfyui_path)
print(f"'{comfyui_path}' added to sys.path")
def add_extra_model_paths() -> None:
"""
Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path.
"""
# Ensure custom_nodes directory exists
custom_nodes_path = os.path.join(os.getcwd(), "custom_nodes")
if not os.path.exists(custom_nodes_path):
os.makedirs(custom_nodes_path)
print(f"Created custom_nodes directory at: {custom_nodes_path}")
try:
from main import load_extra_path_config
except ImportError:
print(
"Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead."
)
from utils.extra_config import load_extra_path_config
extra_model_paths = find_path("extra_model_paths.yaml")
if extra_model_paths is not None:
load_extra_path_config(extra_model_paths)
else:
print("Could not find the extra_model_paths config file.")
add_comfyui_directory_to_sys_path()
add_extra_model_paths()
def import_custom_nodes() -> None:
"""Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS
This function sets up a new asyncio event loop, initializes the PromptServer,
creates a PromptQueue, and initializes the custom nodes.
"""
import asyncio
import execution
from nodes import init_extra_nodes
import server
# Creating a new event loop and setting it as the default loop
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# Creating an instance of PromptServer with the loop
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)
# Initializing custom nodes
init_extra_nodes()
# Initialize nodes before using them
import_custom_nodes()
# Now import and use NODE_CLASS_MAPPINGS
from nodes import NODE_CLASS_MAPPINGS
# Create instances of the nodes we'll use
try:
# Load required models
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]()
clipvisionloader = NODE_CLASS_MAPPINGS["CLIPVisionLoader"]()
stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]()
# Image processing nodes
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
imagescale = NODE_CLASS_MAPPINGS["ImageScale"]()
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
vaeencode = NODE_CLASS_MAPPINGS["VAEEncode"]()
saveimage = NODE_CLASS_MAPPINGS["SaveImage"]()
# Conditioning and sampling nodes
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
ksampler = NODE_CLASS_MAPPINGS["KSampler"]()
emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
except KeyError as e:
print(f"Error: Could not find node {e} in NODE_CLASS_MAPPINGS")
print("Available nodes:", list(NODE_CLASS_MAPPINGS.keys()))
raise
# Load all the models that need a safetensors file
model_loaders = [
dualcliploader.load_clip(
clip_name1="t5/t5xxl_fp16.safetensors",
clip_name2="clip_l.safetensors",
type="flux",
),
vaeloader.load_vae("vae/FLUX1/ae.safetensors"),
unetloader.load_unet("diffusion_models/flux1-depth-dev.safetensors"),
clipvisionloader.load_clip("clip_vision/sigclip_vision_patch14_384.safetensors"),
stylemodelloader.load_style_model("style_models/flux1-redux-dev.safetensors")
]
# Check which models are valid
valid_models = [
model for model in model_loaders
if model is not None and len(model) > 0
]
@spaces.GPU(duration=60)
def generate_image(prompt, structure_image, style_image, depth_strength, style_strength):
with torch.inference_mode():
# Set up image dimensions
width = 1024
height = 1024
# Load and process the input images
loaded_structure = loadimage.load_image(structure_image)
loaded_style = loadimage.load_image(style_image)
# Scale images if needed
scaled_structure = imagescale.upscale(loaded_structure, width, height, "lanczos", "center")
scaled_style = imagescale.upscale(loaded_style, width, height, "lanczos", "center")
# Create empty latent
latent = emptylatentimage.generate(width, height, 1)
# Encode the prompt
conditioning = cliptextencode.encode(
clip=get_value_at_index(dualcliploader.load_clip(
clip_name1="t5/t5xxl_fp16.safetensors",
clip_name2="clip_l.safetensors",
type="flux",
), 0),
text=prompt
)
# Sample the image
sampled = ksampler.sample(
model=get_value_at_index(unetloader.load_unet("diffusion_models/flux1-depth-dev.safetensors"), 0),
positive=conditioning,
negative=None,
latent=latent,
seed=random.randint(1, 2**32),
steps=20,
cfg=7.5,
sampler_name="euler",
scheduler="normal",
denoise=1.0,
)
# Decode the latent to image
decoded = vaedecode.decode(
samples=sampled,
vae=get_value_at_index(vaeloader.load_vae("vae/FLUX1/ae.safetensors"), 0)
)
# Save the final image
saved = saveimage.save_images(decoded)
return saved
if __name__ == "__main__":
# Comment out the main() call
# Start your Gradio app
with gr.Blocks() as app:
# Add a title
gr.Markdown("# FLUX Style Shaping")
with gr.Row():
with gr.Column():
# Add an input
prompt_input = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...")
# Add a `Row` to include the groups side by side
with gr.Row():
# First group includes structure image and depth strength
with gr.Group():
structure_image = gr.Image(label="Structure Image", type="filepath")
depth_strength = gr.Slider(minimum=0, maximum=50, value=15, label="Depth Strength")
# Second group includes style image and style strength
with gr.Group():
style_image = gr.Image(label="Style Image", type="filepath")
style_strength = gr.Slider(minimum=0, maximum=1, value=0.5, label="Style Strength")
# The generate button
generate_btn = gr.Button("Generate")
with gr.Column():
# The output image
output_image = gr.Image(label="Generated Image")
# When clicking the button, it will trigger the `generate_image` function, with the respective inputs
# and the output an image
generate_btn.click(
fn=generate_image,
inputs=[prompt_input, structure_image, style_image, depth_strength, style_strength],
outputs=[output_image]
)
app.launch(share=True) |