File size: 14,638 Bytes
6b35cc5
 
 
 
 
 
 
 
56443b7
 
 
6b35cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed540bf
6b35cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import copy

import torch
import torch.nn as nn
from torch.nn.utils.rnn import pad_sequence
from torch.nn.functional import cross_entropy, binary_cross_entropy
from tqdm.auto import tqdm

from utils import Config, extract_spans, generate_targets
from representation import TransformerRepresentation
from layers import SpanEnumerationLayer

DEFAULT_DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")


class SpanNet(nn.Module):
    def __init__(self, **kwargs):
        super(SpanNet, self).__init__()
        self.config = Config()
        self.config.pos = kwargs.get('pos', None)  # pos
        self.config.dp = kwargs.get('dp', 0.3)  # dp
        self.config.transformer_model_name = kwargs.get('transformer_model_name', 'bert-base-uncased')
        self.config.token_pooling = kwargs.get('token_pooling', 'sum')
        self.device = kwargs.get('device', DEFAULT_DEVICE)

        self.config.repr_type = kwargs.get('repr_type', 'token_classification')
        assert self.config.repr_type in ['token_classification', 
                                        'span_enumeration'], 'Invalid representaton type'

        
        self.transformer = TransformerRepresentation(
            model_name=self.config.transformer_model_name,
            device=self.device).to(self.device)
        
        self.transformer_dim = self.transformer.embedding_dim
        if self.config.pos:
            self.transformer.add_special_tokens([f'[{p}]' for p in self.config.pos])

        self.span_tags = ['B', 'I', 'O']  # , '-']
        
        self.enumeration_layer =  SpanEnumerationLayer()
        output_size = {'token_classification': len(self.span_tags),
                        'span_enumeration': 1}
        self.span_output_layer = nn.Sequential(
            nn.Linear(self.transformer_dim, self.transformer_dim),
            nn.ReLU(), nn.Dropout(p=self.config.dp),
            nn.Linear(self.transformer_dim, output_size[self.config.repr_type]))
    def to_dict(self):
        return {
            'model_config': self.config.__dict__,
            'model_state_dict': self.state_dict()
        }

    @classmethod
    def load_model(cls, model_path, device=DEFAULT_DEVICE):
        res = torch.load(model_path, device)
        model = cls(**res['model_config'])
        model.load_state_dict(res['model_state_dict'], strict=False)
        model.eval()
        return model

    @classmethod
    def preds_to_sequences(self, predictions, enumerations, length):
      # assumes the function is applied per tensor/sample
      # sort descendindly
      enum_preds = {predictions[idx].item(): enumerations[idx] for idx in range(len(enumerations))}
      sorted_enum_preds = dict(sorted(enum_preds.items(), key=lambda val:val[1], reverse=True))

      # look for clashes
      spans = [sorted_enum_preds[key] for key in sorted_enum_preds.keys()]
      spans_copy = [sorted_enum_preds[key] for key in sorted_enum_preds.keys()]

      i=0
      while(i!=(len(spans_copy))):
        filtered_spans = []
        s,e = spans_copy[i]
        for j in range(i+1, len(spans_copy)):
          sj,ej = spans_copy[j]
          if((sj<s<=ej<e) or (sj<s<=ej<=e) or ((s<sj)&(e<ej))):
            filtered_spans.append(spans_copy[j])
        i+=1
        spans_copy = [span for span in spans_copy if span not in filtered_spans]
      
      chosen_indices = [spans.index(span) for span in spans_copy]
      filtered_enum_preds = {list(sorted_enum_preds.keys())[idx]:
      sorted_enum_preds[list(sorted_enum_preds.keys())[idx]] 
      for idx in chosen_indices}
      # assign BIO to spans
      tagged_seq = ['O']*length
      for idx in range(len(spans_copy)):
        s,e =spans_copy[idx]
        
        tagged_seq[s]='B'
       
        if((e-s)>0):
          bounds = (e+1)-(s+1)
          tagged_seq[s+1:e+1] =['I'] * bounds

      return tagged_seq

    def save_model(self, output_path):
        torch.save(self.to_dict(), output_path)

    def _extract_sentence_vectors(self, sentences, pos=None):
        if pos and self.config.pos:
            sentences = [[f'[{p}] {s}' for s, p in zip(s, p)]
                         for s, p in zip(sentences, pos)]
        outs = self.transformer(sentences, is_pretokenized=True,
                                token_pooling=self.config.token_pooling)
        return outs.pooled_tokens

    def forward(self, sentences, pos=None, tags=None, **kwargs):
        out_dict = {}
        embs = self._extract_sentence_vectors(sentences, pos)
        if kwargs.get('output_word_vecs', False):
            out_dict['word_vecs'] = embeddings

        lens = [len(s) for s in embs]
        
        if self.config.repr_type == 'span_enumeration':
          embs, enumerations = self.enumeration_layer(embs, lens)
          lens = [len(e) for e in enumerations]
      
        input_layer = pad_sequence(embs, batch_first=True)
        
        span_scores = [torch.unbind(f)[:l]
                       for f, l in zip(self.span_output_layer(input_layer), lens)]
     

        if kwargs.get('output_span_scores', False):
            out_dict['span_scores'] = span_scores
        if self.config.repr_type == "token_classification":
            pred_span_ids = [[torch.argmax(s) for s in sc] for sc in span_scores]
            pred_span_tags = [[self.span_tags[idx] for idx in sequence]
                            for sequence in pred_span_ids]
            out_dict['pred_tags'] = pred_span_tags
        else:
            lens = [len(s) for s in sentences]
            tagged_seq=[]
            prev_enum = 0
            for idx in range(0, len(enumerations)):
                enum = enumerations[idx]
                length =lens[idx]
                
                scores = flat_scores[prev_enum :len(enum)+ prev_enum]
            
                prev_enum = len(enum)
                tagged_seq.append(self.preds_to_sequences(scores, enum, length))
            out_dict['pred_tags'] = tagged_seq
        

        if tags is None:
            return out_dict

        if self.config.repr_type == 'span_enumeration':
          targets = generate_targets(enumerations, tags)
          targets = torch.Tensor([t for st in targets for t in st])
          flat_scores = torch.Tensor([t for score in span_scores for t in score])
          print('before: ', flat_scores.shape)
        if self.config.repr_type == 'token_classification':
          # limit the targets of each sentence to the words not truncated during tokenization
          targets = torch.cat(
              [torch.tensor([self.span_tags.index(t[0]) for t, _ in zip(tg, sc)])
              for tg, sc in zip(tags, span_scores)]).to(self.device)  
          flat_scores = torch.stack([s for tg, sc in zip(tags, span_scores) for _, s in zip(tg, sc)])
        

        if self.config.repr_type == 'span_enumeration':
          span_loss = binary_cross_entropy(flat_scores.sigmoid(), targets)
 
        else:
          span_loss = cross_entropy(flat_scores, targets)
        out_dict['loss'] = span_loss
        return out_dict

    def from_span_scores(self, span_scores):
        pred_span_ids = [[torch.argmax(s) for s in sc] for sc in span_scores]
        return [[self.span_tags[idx] for idx in sequence]
                for sequence in pred_span_ids]


class EntNet(nn.Module):
    def __init__(self, **kwargs):
        super(EntNet, self).__init__()
        self.config = Config()
        self.span_net = kwargs.get('span_net')
        self.config.tune_span_net = kwargs.get('tune_span_net', False)
        self.config.use_span_emb = kwargs.get('use_span_emb', False)
        self.config.use_ent_markers = kwargs.get('use_ent_markers', False)
        # it is possible to tune span_net without using its embeddings
        if self.span_net and not self.config.tune_span_net:
            for p in self.span_net.parameters():
                p.requires_grad = False
        self.config.ent_tags = self.ent_tags = kwargs.get('ent_tags')
        self.config.pos = kwargs.get('pos', None)
        self.config.dp = kwargs.get('dp', 0.3)
        self.config.transformer_model_name = kwargs.get('transformer_model_name', 'bert-base-uncased')
        self.config.token_pooling = kwargs.get('token_pooling', 'first')
        self.device = kwargs.get('device', DEFAULT_DEVICE)

        self.transformer = TransformerRepresentation(
            model_name=self.config.transformer_model_name,
            device=self.device).to(self.device)
        self.transformer_dim = self.transformer.embedding_dim

        self.transformer.add_special_tokens(['[ENT]', '[/ENT]'])
        self.transformer.add_special_tokens(['[INFO]', '[/INFO]'])
        if self.config.pos:
            self.transformer.add_special_tokens(
                ['['+p+']' for p in self.config.pos])

        self.ent_output_layer = nn.Sequential(
            nn.Linear(2*self.transformer_dim, 2*self.transformer_dim),
            nn.ReLU(), nn.Dropout(p=self.config.dp),
            nn.Linear(2*self.transformer_dim, len(self.config.ent_tags)))

    def to_dict(self):
        return {
            'model_config': self.config.__dict__,
            'span_net_config': self.span_net.config.__dict__ if self.span_net is not None else None,
            'model_state_dict': self.state_dict()
        }

    @classmethod
    def load_model(cls, model_path, device=DEFAULT_DEVICE):
        res = torch.load(model_path, device)
        span_net = SpanNet(**res['span_net_config']) if res['span_net_config'] is not None else None
        model = cls(span_net=span_net, **res['model_config'])
        model.load_state_dict(res['model_state_dict'])
        model.eval()
        return model

    def save_model(self, output_path):
        torch.save(self.to_dict(), output_path)

    def _extract_sentence_vectors(self, sentences, pos=None, ent_bounds=None):
        if pos and self.config.pos:
            sentences = [[f'[{p}] {s}' for s, p in zip(s, p)]
                         for s, p in zip(sentences, pos)]
        if ent_bounds and self.config.use_ent_markers:
            for sent, sent_ents in zip(sentences, ent_bounds):
                for ent in sent_ents:
                    sent[ent[0]] = f'[ENT] {sent[ent[0]]}'
                    sent[ent[1]] = f'{sent[ent[1]]} [/ENT]'

        outs = self.transformer(sentences, is_pretokenized=True,
                                token_pooling=self.config.token_pooling)
        return outs.pooled_tokens

    def forward(self, sentences, pos=None, tags=None, **kwargs):
        out_dict = {}
        pred_span_seqs = kwargs.get('pred_tags', None)
        if pred_span_seqs is None:
            span_out = self.span_net(sentences, pos=pos,
                                     output_word_vecs=self.config.use_span_emb,
                                     tags=tags if self.config.tune_span_net else None)
            pred_span_seqs = span_out['pred_tags']
        bounds = [[e[1] for e in extract_spans(t, tagless=True)[3]]
                  for t in pred_span_seqs]
        if tags is not None:
            gold_spans = [[e for e in extract_spans(t, tagless=True)[3]]
                          for t in tags]
            matches = [[[g[0]
                         for g in golds if p[0] == g[1][0] and p[1] == g[1][1]]
                        for p in preds]
                       for preds, golds in zip(bounds, gold_spans)]
            targets = [[span_matches[0] if len(span_matches) == 1 else 'O'
                        for span_matches in sent_matches]
                       for sent_matches in matches]
                       
        sentences = [sent + [t for bd in sent_bounds
                                for t in [self.transformer.tokenizer.sep_token] + sent[bd[0]:bd[1] + 1]] 
                        + [self.transformer.tokenizer.sep_token]
                        for sent, sent_bounds in zip(sentences, bounds)]
        sep_ids = [[i for i, s in enumerate(sent) if s == self.transformer.tokenizer.sep_token]
                   for sent in sentences]
        embs = self._extract_sentence_vectors(sentences, pos, bounds)
        if kwargs.get('output_word_vecs', False):
            out_dict['word_vecs'] = embs

        span_vecs = [
            torch.stack([torch.cat((torch.sum(e[b[0]:b[1] + 1], dim=0), 
                                    torch.sum(e[spi[i]:spi[i+1]+1], dim=0))) for i, b in enumerate(bd)])
            if bd else torch.zeros((0)).to(self.device)
            for e, bd, spi in zip(embs, bounds, sep_ids)]
        ent_scores = [self.ent_output_layer(sv) if len(sv) else sv
                      for sv in span_vecs]
        if kwargs.get('output_ent_scores', False):
            out_dict['ent_scores'] = ent_scores
            out_dict['bounds'] = bounds
        if tags is None:
            max_tags = [[self.ent_tags[torch.argmax(e)] for e in es]
                        for es in ent_scores]
            # reconstruct sequences
            sent_lens = [len(s) for s in sentences]
            combined_sequences = []
            for mt, bnd, lens in zip(max_tags, bounds, sent_lens):
                x = ['O' for _ in range(lens)]
                for t, b in zip(mt, bnd):
                    x[b[0]] = 'O' if t == 'O' else f'B-{t}'
                    for i in range(b[0] + 1, b[1] + 1):
                        x[i] = 'O' if t == 'O' else f'I-{t}'
                combined_sequences.append(x)
            out_dict['pred_tags'] = combined_sequences
            return out_dict

        ent_targs = torch.tensor([self.ent_tags.index(t)
                                  for targ in targets for t in targ],
                                 dtype=torch.long).to(self.device)
        ent_preds = torch.cat(ent_scores)
        if not len(ent_preds):
            out_dict['loss'] = None
            return out_dict
        ent_loss = cross_entropy(ent_preds, ent_targs)
        out_dict['loss'] = ent_loss
        if self.config.tune_span_net:
            out_dict['loss'] += span_out['loss']
        return out_dict

    def from_ent_scores(self, ent_scores, sentences, bounds):
        max_tags = [[self.ent_tags[torch.argmax(e)] for e in es]
                    for es in ent_scores]
        # reconstruct sequences
        sent_lens = [len(s) for s in sentences]
        combined_sequences = []
        for mt, bnd, lens in zip(max_tags, bounds, sent_lens):
            x = ['O' for _ in range(lens)]
            for t, b in zip(mt, bnd):
                x[b[0]] = 'O' if t == 'O' else f'B-{t}'
                for i in range(b[0] + 1, b[1] + 1):
                    x[i] = 'O' if t == 'O' else f'I-{t}'
            combined_sequences.append(x)
        return combined_sequences