Spaces:
Build error
Build error
File size: 14,638 Bytes
6b35cc5 56443b7 6b35cc5 ed540bf 6b35cc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import copy
import torch
import torch.nn as nn
from torch.nn.utils.rnn import pad_sequence
from torch.nn.functional import cross_entropy, binary_cross_entropy
from tqdm.auto import tqdm
from utils import Config, extract_spans, generate_targets
from representation import TransformerRepresentation
from layers import SpanEnumerationLayer
DEFAULT_DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class SpanNet(nn.Module):
def __init__(self, **kwargs):
super(SpanNet, self).__init__()
self.config = Config()
self.config.pos = kwargs.get('pos', None) # pos
self.config.dp = kwargs.get('dp', 0.3) # dp
self.config.transformer_model_name = kwargs.get('transformer_model_name', 'bert-base-uncased')
self.config.token_pooling = kwargs.get('token_pooling', 'sum')
self.device = kwargs.get('device', DEFAULT_DEVICE)
self.config.repr_type = kwargs.get('repr_type', 'token_classification')
assert self.config.repr_type in ['token_classification',
'span_enumeration'], 'Invalid representaton type'
self.transformer = TransformerRepresentation(
model_name=self.config.transformer_model_name,
device=self.device).to(self.device)
self.transformer_dim = self.transformer.embedding_dim
if self.config.pos:
self.transformer.add_special_tokens([f'[{p}]' for p in self.config.pos])
self.span_tags = ['B', 'I', 'O'] # , '-']
self.enumeration_layer = SpanEnumerationLayer()
output_size = {'token_classification': len(self.span_tags),
'span_enumeration': 1}
self.span_output_layer = nn.Sequential(
nn.Linear(self.transformer_dim, self.transformer_dim),
nn.ReLU(), nn.Dropout(p=self.config.dp),
nn.Linear(self.transformer_dim, output_size[self.config.repr_type]))
def to_dict(self):
return {
'model_config': self.config.__dict__,
'model_state_dict': self.state_dict()
}
@classmethod
def load_model(cls, model_path, device=DEFAULT_DEVICE):
res = torch.load(model_path, device)
model = cls(**res['model_config'])
model.load_state_dict(res['model_state_dict'], strict=False)
model.eval()
return model
@classmethod
def preds_to_sequences(self, predictions, enumerations, length):
# assumes the function is applied per tensor/sample
# sort descendindly
enum_preds = {predictions[idx].item(): enumerations[idx] for idx in range(len(enumerations))}
sorted_enum_preds = dict(sorted(enum_preds.items(), key=lambda val:val[1], reverse=True))
# look for clashes
spans = [sorted_enum_preds[key] for key in sorted_enum_preds.keys()]
spans_copy = [sorted_enum_preds[key] for key in sorted_enum_preds.keys()]
i=0
while(i!=(len(spans_copy))):
filtered_spans = []
s,e = spans_copy[i]
for j in range(i+1, len(spans_copy)):
sj,ej = spans_copy[j]
if((sj<s<=ej<e) or (sj<s<=ej<=e) or ((s<sj)&(e<ej))):
filtered_spans.append(spans_copy[j])
i+=1
spans_copy = [span for span in spans_copy if span not in filtered_spans]
chosen_indices = [spans.index(span) for span in spans_copy]
filtered_enum_preds = {list(sorted_enum_preds.keys())[idx]:
sorted_enum_preds[list(sorted_enum_preds.keys())[idx]]
for idx in chosen_indices}
# assign BIO to spans
tagged_seq = ['O']*length
for idx in range(len(spans_copy)):
s,e =spans_copy[idx]
tagged_seq[s]='B'
if((e-s)>0):
bounds = (e+1)-(s+1)
tagged_seq[s+1:e+1] =['I'] * bounds
return tagged_seq
def save_model(self, output_path):
torch.save(self.to_dict(), output_path)
def _extract_sentence_vectors(self, sentences, pos=None):
if pos and self.config.pos:
sentences = [[f'[{p}] {s}' for s, p in zip(s, p)]
for s, p in zip(sentences, pos)]
outs = self.transformer(sentences, is_pretokenized=True,
token_pooling=self.config.token_pooling)
return outs.pooled_tokens
def forward(self, sentences, pos=None, tags=None, **kwargs):
out_dict = {}
embs = self._extract_sentence_vectors(sentences, pos)
if kwargs.get('output_word_vecs', False):
out_dict['word_vecs'] = embeddings
lens = [len(s) for s in embs]
if self.config.repr_type == 'span_enumeration':
embs, enumerations = self.enumeration_layer(embs, lens)
lens = [len(e) for e in enumerations]
input_layer = pad_sequence(embs, batch_first=True)
span_scores = [torch.unbind(f)[:l]
for f, l in zip(self.span_output_layer(input_layer), lens)]
if kwargs.get('output_span_scores', False):
out_dict['span_scores'] = span_scores
if self.config.repr_type == "token_classification":
pred_span_ids = [[torch.argmax(s) for s in sc] for sc in span_scores]
pred_span_tags = [[self.span_tags[idx] for idx in sequence]
for sequence in pred_span_ids]
out_dict['pred_tags'] = pred_span_tags
else:
lens = [len(s) for s in sentences]
tagged_seq=[]
prev_enum = 0
for idx in range(0, len(enumerations)):
enum = enumerations[idx]
length =lens[idx]
scores = flat_scores[prev_enum :len(enum)+ prev_enum]
prev_enum = len(enum)
tagged_seq.append(self.preds_to_sequences(scores, enum, length))
out_dict['pred_tags'] = tagged_seq
if tags is None:
return out_dict
if self.config.repr_type == 'span_enumeration':
targets = generate_targets(enumerations, tags)
targets = torch.Tensor([t for st in targets for t in st])
flat_scores = torch.Tensor([t for score in span_scores for t in score])
print('before: ', flat_scores.shape)
if self.config.repr_type == 'token_classification':
# limit the targets of each sentence to the words not truncated during tokenization
targets = torch.cat(
[torch.tensor([self.span_tags.index(t[0]) for t, _ in zip(tg, sc)])
for tg, sc in zip(tags, span_scores)]).to(self.device)
flat_scores = torch.stack([s for tg, sc in zip(tags, span_scores) for _, s in zip(tg, sc)])
if self.config.repr_type == 'span_enumeration':
span_loss = binary_cross_entropy(flat_scores.sigmoid(), targets)
else:
span_loss = cross_entropy(flat_scores, targets)
out_dict['loss'] = span_loss
return out_dict
def from_span_scores(self, span_scores):
pred_span_ids = [[torch.argmax(s) for s in sc] for sc in span_scores]
return [[self.span_tags[idx] for idx in sequence]
for sequence in pred_span_ids]
class EntNet(nn.Module):
def __init__(self, **kwargs):
super(EntNet, self).__init__()
self.config = Config()
self.span_net = kwargs.get('span_net')
self.config.tune_span_net = kwargs.get('tune_span_net', False)
self.config.use_span_emb = kwargs.get('use_span_emb', False)
self.config.use_ent_markers = kwargs.get('use_ent_markers', False)
# it is possible to tune span_net without using its embeddings
if self.span_net and not self.config.tune_span_net:
for p in self.span_net.parameters():
p.requires_grad = False
self.config.ent_tags = self.ent_tags = kwargs.get('ent_tags')
self.config.pos = kwargs.get('pos', None)
self.config.dp = kwargs.get('dp', 0.3)
self.config.transformer_model_name = kwargs.get('transformer_model_name', 'bert-base-uncased')
self.config.token_pooling = kwargs.get('token_pooling', 'first')
self.device = kwargs.get('device', DEFAULT_DEVICE)
self.transformer = TransformerRepresentation(
model_name=self.config.transformer_model_name,
device=self.device).to(self.device)
self.transformer_dim = self.transformer.embedding_dim
self.transformer.add_special_tokens(['[ENT]', '[/ENT]'])
self.transformer.add_special_tokens(['[INFO]', '[/INFO]'])
if self.config.pos:
self.transformer.add_special_tokens(
['['+p+']' for p in self.config.pos])
self.ent_output_layer = nn.Sequential(
nn.Linear(2*self.transformer_dim, 2*self.transformer_dim),
nn.ReLU(), nn.Dropout(p=self.config.dp),
nn.Linear(2*self.transformer_dim, len(self.config.ent_tags)))
def to_dict(self):
return {
'model_config': self.config.__dict__,
'span_net_config': self.span_net.config.__dict__ if self.span_net is not None else None,
'model_state_dict': self.state_dict()
}
@classmethod
def load_model(cls, model_path, device=DEFAULT_DEVICE):
res = torch.load(model_path, device)
span_net = SpanNet(**res['span_net_config']) if res['span_net_config'] is not None else None
model = cls(span_net=span_net, **res['model_config'])
model.load_state_dict(res['model_state_dict'])
model.eval()
return model
def save_model(self, output_path):
torch.save(self.to_dict(), output_path)
def _extract_sentence_vectors(self, sentences, pos=None, ent_bounds=None):
if pos and self.config.pos:
sentences = [[f'[{p}] {s}' for s, p in zip(s, p)]
for s, p in zip(sentences, pos)]
if ent_bounds and self.config.use_ent_markers:
for sent, sent_ents in zip(sentences, ent_bounds):
for ent in sent_ents:
sent[ent[0]] = f'[ENT] {sent[ent[0]]}'
sent[ent[1]] = f'{sent[ent[1]]} [/ENT]'
outs = self.transformer(sentences, is_pretokenized=True,
token_pooling=self.config.token_pooling)
return outs.pooled_tokens
def forward(self, sentences, pos=None, tags=None, **kwargs):
out_dict = {}
pred_span_seqs = kwargs.get('pred_tags', None)
if pred_span_seqs is None:
span_out = self.span_net(sentences, pos=pos,
output_word_vecs=self.config.use_span_emb,
tags=tags if self.config.tune_span_net else None)
pred_span_seqs = span_out['pred_tags']
bounds = [[e[1] for e in extract_spans(t, tagless=True)[3]]
for t in pred_span_seqs]
if tags is not None:
gold_spans = [[e for e in extract_spans(t, tagless=True)[3]]
for t in tags]
matches = [[[g[0]
for g in golds if p[0] == g[1][0] and p[1] == g[1][1]]
for p in preds]
for preds, golds in zip(bounds, gold_spans)]
targets = [[span_matches[0] if len(span_matches) == 1 else 'O'
for span_matches in sent_matches]
for sent_matches in matches]
sentences = [sent + [t for bd in sent_bounds
for t in [self.transformer.tokenizer.sep_token] + sent[bd[0]:bd[1] + 1]]
+ [self.transformer.tokenizer.sep_token]
for sent, sent_bounds in zip(sentences, bounds)]
sep_ids = [[i for i, s in enumerate(sent) if s == self.transformer.tokenizer.sep_token]
for sent in sentences]
embs = self._extract_sentence_vectors(sentences, pos, bounds)
if kwargs.get('output_word_vecs', False):
out_dict['word_vecs'] = embs
span_vecs = [
torch.stack([torch.cat((torch.sum(e[b[0]:b[1] + 1], dim=0),
torch.sum(e[spi[i]:spi[i+1]+1], dim=0))) for i, b in enumerate(bd)])
if bd else torch.zeros((0)).to(self.device)
for e, bd, spi in zip(embs, bounds, sep_ids)]
ent_scores = [self.ent_output_layer(sv) if len(sv) else sv
for sv in span_vecs]
if kwargs.get('output_ent_scores', False):
out_dict['ent_scores'] = ent_scores
out_dict['bounds'] = bounds
if tags is None:
max_tags = [[self.ent_tags[torch.argmax(e)] for e in es]
for es in ent_scores]
# reconstruct sequences
sent_lens = [len(s) for s in sentences]
combined_sequences = []
for mt, bnd, lens in zip(max_tags, bounds, sent_lens):
x = ['O' for _ in range(lens)]
for t, b in zip(mt, bnd):
x[b[0]] = 'O' if t == 'O' else f'B-{t}'
for i in range(b[0] + 1, b[1] + 1):
x[i] = 'O' if t == 'O' else f'I-{t}'
combined_sequences.append(x)
out_dict['pred_tags'] = combined_sequences
return out_dict
ent_targs = torch.tensor([self.ent_tags.index(t)
for targ in targets for t in targ],
dtype=torch.long).to(self.device)
ent_preds = torch.cat(ent_scores)
if not len(ent_preds):
out_dict['loss'] = None
return out_dict
ent_loss = cross_entropy(ent_preds, ent_targs)
out_dict['loss'] = ent_loss
if self.config.tune_span_net:
out_dict['loss'] += span_out['loss']
return out_dict
def from_ent_scores(self, ent_scores, sentences, bounds):
max_tags = [[self.ent_tags[torch.argmax(e)] for e in es]
for es in ent_scores]
# reconstruct sequences
sent_lens = [len(s) for s in sentences]
combined_sequences = []
for mt, bnd, lens in zip(max_tags, bounds, sent_lens):
x = ['O' for _ in range(lens)]
for t, b in zip(mt, bnd):
x[b[0]] = 'O' if t == 'O' else f'B-{t}'
for i in range(b[0] + 1, b[1] + 1):
x[i] = 'O' if t == 'O' else f'I-{t}'
combined_sequences.append(x)
return combined_sequences
|