Spaces:
Build error
Build error
File size: 16,492 Bytes
6b35cc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
import numpy as np
class Config:
def __init__(self):
super(Config, self).__init__()
def read_conll_ner(path):
with open(path) as f:
lines = f.readlines()
unique_entries = []
sentences = []
curr_sentence = []
for line in lines:
if not line.strip():
if curr_sentence:
sentences.append(curr_sentence)
curr_sentence = []
continue
entry = line.split()
curr_sentence.append(entry)
if not len(unique_entries):
unique_entries = [[] for _ in entry[1:]]
for e, list in zip(entry[1:], unique_entries):
if e not in list:
list.append(e)
return [sentences] + unique_entries
def read_pickled_conll(path):
with open(path, "rb") as f:
data = pickle.load(f)
return data
def split_conll_docs(conll_sents, skip_docstart=True):
docs = []
curr_doc = []
for sent in conll_sents:
if sent[0][0] == '-DOCSTART-':
if curr_doc:
docs.append(curr_doc)
curr_doc = []
if skip_docstart:
continue
curr_doc.append(sent)
docs.append(curr_doc)
return docs
def create_context_data(docs, pos_col_id=1, tag_col_id=3, context_length=1, **kwargs):
ctx_type = kwargs.get("ctx_type", "other")
sep_token = kwargs.get("sep_token", "[SEP]")
if ctx_type == "cand_titles":
# create context for candidate titles scenario
for doc in docs:
doc["ctx_sent"] = doc["query"] + [sep_token] + f"<split>{sep_token}<split>".join([cand["doc_title"] for cand in doc["BM25_cands"]]).split("<split>")
return docs
if ctx_type == "cand_links":
for doc in docs:
doc_titles_list = f"<split>{sep_token}<split>".join([cand["doc_title"] for cand in doc["BM25_cands"]]).split("<split>")
linked_titles_list = f"<split>{sep_token}<split>".join([linked for cand in doc["BM25_cands"] for linked in cand["linked_titles"]]).split("<split>")
doc["ctx_sent"] = doc["query"] + [sep_token] + doc_titles_list + [sep_token] + linked_titles_list
return docs
if ctx_type == "raw_text":
# create context for candidate raw text
for doc in docs:
doc["ctx_sent"] = [doc["query"] + [sep_token] + [cand["processed_text"]] for cand in doc["BM25_cands"]]
return docs
if ctx_type == 'matched_spans':
matched_spans = kwargs.get('matched_spans')
return [
[[t[0] for t in d] + [t for ms in ms for t in [sep_token] + ms[1]], # sentence tokens + spans
None, # pos tags
[s[tag_col_id] for s in d] if tag_col_id > 0 else None, # ner tags
[len(d)] # sentence length
]
for d, ms in zip(docs, matched_spans)]
if ctx_type == 'bm25_matched_spans':
matched_spans = kwargs.get('matched_spans')
pickled_data = kwargs.get('pickled_data')
docs = [[[t[0] for t in d] + [t for ms in ms for t in [sep_token] + ms[1]], # sentence tokens + spans
None, # pos tags
[s[tag_col_id] for s in d], # ner tags
[len(d)] # sentence length
]
for d, ms in zip(docs, matched_spans)]
for ms, doc in zip(docs,pickled_data):
doc_titles_list = f"<split>{sep_token}<split>".join([cand["doc_title"] for cand in doc["BM25_cands"]]).split("<split>")
linked_titles_list = f"<split>{sep_token}<split>".join([linked for cand in doc["BM25_cands"] for linked in cand["linked_titles"]]).split("<split>")
ms[0] = ms[0] + [sep_token] + doc_titles_list + [sep_token] + linked_titles_list
return docs
if ctx_type == "infobox":
infobox_keys_path = kwargs.get("infobox_keys_path")
infobox_keys = read_pickled_conll(infobox_keys_path)
if 'pred_spans' in docs[0]:
docs = get_pred_ent_bounds(docs)
for doc in docs:
if 'pred_spans' in doc:
ents = [' '.join(doc['query'][bd[0]:bd[1] + 1]) for bd in doc['pred_ent_bounds']]
ents_wo_space = [''.join(doc['query'][bd[0]:bd[1] + 1]) for bd in doc['pred_ent_bounds']]
else:
ents = [' '.join(doc['query'][bd[0]:bd[1] + 1]) for bd in doc['ent_bounds']]
ents_wo_space = [''.join(doc['query'][bd[0]:bd[1] + 1]) for bd in doc['ent_bounds']]
ents = list(set(ents + ents_wo_space))
infobox = [infobox_keys[en] for en in ents if en in infobox_keys and infobox_keys[en]]
for ibs in infobox:
ibs[0] = '[INFO] ' + ibs[0]
ibs[-1] = ibs[-1] + ' [/INFO]'
infobox = [i for j in infobox for i in j]
doc["ctx_sent"] = doc["query"] + [sep_token] + infobox
return docs
# create context type for other scenarios
res = []
for doc in docs:
ctx_len = context_length if context_length > 0 else len(doc)
# for the last sentences loop around to the beginning for context
padded_doc = doc + doc[:ctx_len]
for i in range(len(doc)):
res.append((
[s[0] for sent in padded_doc[i:i+ctx_len] for s in sent],
[s[pos_col_id] for sent in padded_doc[i:i+ctx_len] for s in sent] if pos_col_id > 0 else None,
[s[tag_col_id] for sent in padded_doc[i:i+ctx_len] for s in sent],
[len(sent) for sent in padded_doc[i:i+ctx_len]],
{} # dictionary for extra context
))
return res
def calc_correct(sentence):
gold_chunks = []
parallel_chunks = []
pred_chunks = []
curr_gold_chunk = []
curr_parallel_chunk = []
curr_pred_chunk = []
prev_tag = None
for line in sentence:
_, _, _, gt, pt = line
curr_tag = None
if '-' in pt:
curr_tag = pt.split('-')[1]
if gt.startswith('B'):
if curr_gold_chunk:
gold_chunks.append(curr_gold_chunk)
parallel_chunks.append(curr_parallel_chunk)
curr_gold_chunk = [gt]
curr_parallel_chunk = [pt]
elif gt.startswith('I') or (pt.startswith('I') and curr_tag == prev_tag
and curr_gold_chunk):
curr_gold_chunk.append(gt)
curr_parallel_chunk.append(pt)
elif gt.startswith('O') and pt.startswith('O'):
if curr_gold_chunk:
gold_chunks.append(curr_gold_chunk)
parallel_chunks.append(curr_parallel_chunk)
curr_gold_chunk = []
curr_parallel_chunk = []
if pt.startswith('O'):
if curr_pred_chunk:
pred_chunks.append(curr_pred_chunk)
curr_pred_chunk = []
elif pt.startswith('B'):
if curr_pred_chunk:
pred_chunks.append(curr_pred_chunk)
curr_pred_chunk = [pt]
prev_tag = curr_tag
else:
if prev_tag is not None and curr_tag != prev_tag:
prev_tag = curr_tag
if curr_pred_chunk:
pred_chunks.append(curr_pred_chunk)
curr_pred_chunk = []
curr_pred_chunk.append(pt)
if curr_gold_chunk:
gold_chunks.append(curr_gold_chunk)
parallel_chunks.append(curr_parallel_chunk)
if curr_pred_chunk:
pred_chunks.append(curr_pred_chunk)
correct = sum([1 for gc, pc in zip(gold_chunks, parallel_chunks)
if not len([1 for g, p in zip(gc, pc) if g != p])])
correct_tagless = sum([1 for gc, pc in zip(gold_chunks, parallel_chunks)
if not len([1 for g, p in zip(gc, pc) if g[0] != p[0]])])
# return correct, gold_chunks, parallel_chunks, pred_chunks, ob1_correct, correct_tagless
return {'correct': correct,
'correct_tagless': correct_tagless,
'gold_count': len(gold_chunks),
'pred_count': len(pred_chunks)}
def tag_sentences(sentences):
nlp = stanza.Pipeline(lang='en', processors='tokenize,pos', logging_level='WARNING')
tagged_sents = []
for sentence in sentences:
n = nlp(sentence)
tagged_sent = []
for s in n.sentences:
for w in s.words:
tagged_sent.append([w.text, w.upos])
tagged_sents.append(tagged_sent)
return tagged_sents
def extract_spans(sentence, tagless=False):
spans_positions = []
span_bounds = []
all_bounds = []
span_tags = []
curr_tag = None
curr_span = []
curr_span_start = -1
# span ids, span types
for i, token in enumerate(sentence):
if token.startswith('B'):
if curr_span:
spans_positions.append([curr_span, len(all_bounds)])
span_bounds.append([curr_span_start, i-1])
all_bounds.append([[curr_span_start, i - 1], 'E', len(all_bounds)])
if not tagless:
span_tags.append(token.split('-')[1])
curr_span = []
curr_tag = None
curr_span.append(token)
curr_tag = None if tagless else token.split('-')[1]
curr_span_start = i
elif token.startswith('I'):
if not tagless:
tag = token.split('-')[1]
if tag != curr_tag and curr_tag is not None:
spans_positions.append([curr_span, len(all_bounds)])
span_bounds.append([curr_span_start, i - 1])
span_tags.append(token.split('-')[1])
all_bounds.append([[curr_span_start, i - 1], 'E', len(all_bounds)])
curr_span = []
curr_tag = tag
curr_span_start = i
elif curr_tag is None:
curr_span = []
curr_tag = tag
curr_span_start = i
elif not curr_span:
curr_span_start = i
curr_span.append(token)
elif token.startswith('O') or token.startswith('-'):
if curr_span:
spans_positions.append([curr_span, len(all_bounds)])
span_bounds.append([curr_span_start, i-1])
all_bounds.append([[curr_span_start, i-1], 'E', len(all_bounds)])
curr_span = []
curr_tag = None
all_bounds.append([[i], 'W', len(all_bounds)])
# check if sentence ended with a span
if curr_span:
spans_positions.append([curr_span, len(all_bounds)])
span_bounds.append([curr_span_start, len(sentence) - 1])
all_bounds.append([[curr_span_start, len(sentence) - 1], 'E', len(all_bounds)])
tagged_bounds = [[loc[0][0].split('-')[1] if '-' in loc[0][0] else loc[0][0], bound]
for loc, bound in zip(spans_positions, span_bounds)]
return spans_positions, span_bounds, all_bounds, tagged_bounds
def ner_corpus_stats(corpus_path):
onto_train_cols = read_conll_ner(corpus_path)
tags = list(set([t.split('-')[1] for t in onto_train_cols[3] if '-' in t]))
onto_train_spans = [extract_spans([t[3] for t in sent])[3] for sent in
onto_train_cols[0]]
span_lens = [span[1][1] - span[1][0] + 1 for sent in onto_train_spans for
span in sent]
len_stats = [span_lens.count(i + 1) / len(span_lens) for i in
range(max(span_lens))]
flat_spans = [span for sent in onto_train_spans for span in sent]
tag_lens_dict = {k: [] for k in tags}
tag_counts_dict = {k: 0 for k in tags}
for span in flat_spans:
span_length = span[1][1] - span[1][0] + 1
span_tag = span[0][0].split('-')[1]
tag_lens_dict[span_tag].append(span_length)
tag_counts_dict[span_tag] += 1
x = list(tag_counts_dict.items())
x.sort(key=lambda l: l[1])
tag_counts = [list(l) for l in x]
for l in tag_counts:
l[1] = l[1] / len(span_lens)
tag_len_stats = {k: [v.count(i + 1) / len(v) for i in range(max(v))]
for k, v in tag_lens_dict.items()}
span_texts = [sent[span[1][0]:span[1][1] + 1]
for sent, spans in zip(onto_train_cols[0], onto_train_spans)
for span in spans]
span_pos = [[span[0][-1].split('-')[1], '_'.join(t[1] for t in span)]
for span in span_texts]
unique_pos = list(set([span[1] for span in span_pos]))
pos_dict = {k: 0 for k in unique_pos}
for span in span_pos:
pos_dict[span[1]] += 1
unique_pos.sort(key=lambda l: pos_dict[l], reverse=True)
pos_stats = [[p, pos_dict[p] / len(span_pos)] for p in unique_pos]
tag_pos_dict = {kt: {kp: 0 for kp in unique_pos} for kt in tags}
for span in span_pos:
tag_pos_dict[span[0]][span[1]] += 1
tag_pos_stats = {kt: [[p, tag_pos_dict[kt][p] / tag_counts_dict[kt]]
for p in unique_pos] for kt in tags}
for kt in tags:
tag_pos_stats[kt].sort(key=lambda l: l[1], reverse=True)
return len_stats, tag_len_stats, tag_counts, pos_stats, tag_pos_stats
def filter_by_max_ents(sentences, max_ent_length):
"""
Filters a given list of sentences and only returns the sentences that have
named entities shorter than or equal to the given max_ent_length.
:param sentences: sentences in conll format as extracted by read_conll_ner
:param max_ent_length: The maximum number of tokens in an entity
:return: a lits of sentences
"""
filtered_sents = []
for sent in sentences:
sent_span_lens = [s[1] - s[0] + 1
for s in extract_spans([t[3] for t in sent])[1]]
if not sent_span_lens or max(sent_span_lens) <= max_ent_length:
filtered_sents.append(sent)
return filtered_sents
def get_pred_ent_bounds(docs):
for doc in docs:
eb = []
count = 0
for p_eb in doc['pred_spans']:
if p_eb == 'B':
eb.append([count,count])
elif p_eb == 'I' and len(eb) > 0:
eb[-1][1] = count
count += 1
doc['pred_ent_bounds'] = eb
return docs
def enumerate_spans(batch):
enumerated_spans_batch = []
for idx in range(0, len(batch)):
sentence_length = batch[idx]
enumerated_spans = []
for x in range(len(sentence_length)):
for y in range(x, len(sentence_length)):
enumerated_spans.append([x,y])
enumerated_spans_batch.append(enumerated_spans)
return enumerated_spans_batch
def compact_span_enumeration(batch):
sentence_lengths = [len(b) for b in batch]
enumerated_spans = [[[x, y]
for y in range(0, sentence_length)
for x in range(sentence_length)]
for sentence_length in sentence_lengths]
return enumerated_spans
def preprocess_data(data):
clean_data = []
for sample in data:
clean_tokens = [araby.strip_tashkeel(token) for token in sample[0]]
clean_tokens = [araby.strip_tatweel(token) for token in clean_tokens]
clean_sample = [clean_tokens]
clean_sample.extend(sample[1:])
clean_data.append(clean_sample)
return clean_data
def generate_targets(enumerated_spans, sentences):
#### could be refactored into a helper function ####
extracted_spans= [extract_spans(sentence,True)[3] for sentence in sentences]
target_locations = []
for span in extracted_spans:
sentence_locations = []
for location in span:
sentence_locations.append(location[1])
target_locations.append(sentence_locations)
#### could be refactored into a helper function ####
targets= []
for span, location_list in zip(enumerated_spans, target_locations):
span_arr = np.zeros_like(span).tolist()
target_indices = [span.index(span_location) for
span_location in location_list]
for idx in target_indices:
span_arr[idx] =1
span_arr = [0 if x!=1 else x for x in span_arr]
targets.append(list(span_arr))
return targets
def label_tags(tags):
output_tags = []
for tag in tags:
if (tag == "O"):
output_tags.append(0)
else:
output_tags.append(1)
return output_tags |