Spaces:
Sleeping
Sleeping
File size: 1,330 Bytes
1678478 0815599 1678478 7e520c6 0815599 81ae7f5 7e520c6 81ae7f5 1678478 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import gradio as gr
import os
import datetime
import inference
import spaces
example1 = ["sample_data/ref1.jpg", "sample_data/ano.mp3"]
example2 = ["sample_data/ref2.jpg", "sample_data/rakugo.mp3"]
@spaces.GPU
def fix_face_video(input_image, input_audio):
dt = datetime.datetime.now() + datetime.timedelta(hours=9)
fol_name = dt.strftime("%Y%m%d")
file_name = dt.strftime("%H%M%S")
out_video = "./output/" + fol_name+ "/fix_face_" + file_name + ".mp4"
inference.fix_face(input_image, input_audio, out_video)
return out_video
image = gr.Image(label="画像(image)", type="filepath")
audio = gr.File(label="音声(audio)", file_types=[".mp3", ".MP3"])
out_video = gr.Video(label="Fix Face Video")
btn = gr.Button("送信", variant="primary")
title = "V_Express"
description = "<div style='text-align: center;'><h3>画像と音声だけで生成できます。(Using only images and audio)"
description += "<br>This uses the following V-Express \"https://github.com/tencent-ailab/V-Express\"</h3></div>"
demo = gr.Interface(
fn=fix_face_video,
inputs=[image, audio],
examples=[example1, example2],
outputs=[out_video],
title=title,
submit_btn=btn,
clear_btn=None,
description=description,
allow_flagging="never"
)
demo.queue()
demo.launch(share=True, debug=True) |