Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -25,6 +25,10 @@ qdrant_api_key = os.getenv('qdrant_api_key')
|
|
25 |
|
26 |
|
27 |
|
|
|
|
|
|
|
|
|
28 |
#csv loader
|
29 |
loader = CSVLoader(file_path='data.csv')
|
30 |
data=loader.load()
|
@@ -37,6 +41,7 @@ texts = text_splitter.split_documents(data)
|
|
37 |
#embeding
|
38 |
embeding=OpenAIEmbeddings(openai_api_key=openai_api_key, model="text-embedding-3-small")
|
39 |
|
|
|
40 |
#import quantization
|
41 |
|
42 |
from langchain.vectorstores import Qdrant
|
@@ -52,7 +57,7 @@ qdrant = Qdrant.from_documents(
|
|
52 |
url=qdrant_url,
|
53 |
prefer_grpc=True,
|
54 |
api_key=qdrant_api_key,
|
55 |
-
collection_name="
|
56 |
quantization_config=models.BinaryQuantization(
|
57 |
binary=models.BinaryQuantizationConfig(
|
58 |
always_ram=True,
|
@@ -60,6 +65,7 @@ qdrant = Qdrant.from_documents(
|
|
60 |
)
|
61 |
)
|
62 |
|
|
|
63 |
#qdrant client
|
64 |
qdrant_client = QdrantClient(
|
65 |
url=qdrant_url,
|
@@ -72,12 +78,17 @@ from re import search
|
|
72 |
retriver=qdrant.as_retriever( search_type="similarity", search_kwargs={"k":2})
|
73 |
|
74 |
|
|
|
|
|
|
|
|
|
|
|
75 |
from langchain import PromptTemplate
|
76 |
|
77 |
prompt = PromptTemplate(
|
78 |
template="""
|
79 |
# Your Role
|
80 |
-
You are a highly skilled AI specialized in healthcare and medical information retrieval. Your expertise lies in understanding the medical needs of patients and accurately matching them with the most suitable healthcare professionals based on the
|
81 |
|
82 |
# Instruction
|
83 |
Your task is to answer the question using the following pieces of retrieved context delimited by XML tags.
|
@@ -88,26 +99,26 @@ prompt = PromptTemplate(
|
|
88 |
</retrieved context>
|
89 |
|
90 |
# Constraint
|
91 |
-
1. Carefully
|
92 |
User's question:\n{question}\n
|
93 |
-
|
94 |
-
- Reflect on why the question was asked and
|
95 |
2. Select the most relevant information (the key details directly related to the question) from the retrieved context and use it to formulate an answer.
|
96 |
-
3. Generate a
|
97 |
-
•
|
98 |
-
• City
|
99 |
-
• Specialization
|
100 |
-
• Qualification
|
101 |
-
•
|
102 |
-
• Patient Satisfaction Rate
|
103 |
-
•
|
104 |
-
• Wait Time
|
105 |
-
• Hospital Address
|
106 |
-
• Fee
|
107 |
-
• Profile Link
|
108 |
-
4. If the retrieved context does not contain
|
109 |
-
5.
|
110 |
-
6. At the end of the response,
|
111 |
|
112 |
# Question:
|
113 |
{question}""",
|
@@ -115,8 +126,10 @@ prompt = PromptTemplate(
|
|
115 |
)
|
116 |
|
117 |
|
118 |
-
|
119 |
-
llm = ChatOpenAI(model_name="gpt-4o", temperature=0, openai_api_key=openai_api_key)
|
|
|
|
|
120 |
|
121 |
def format_docs(docs):
|
122 |
formatted_docs = []
|
@@ -133,7 +146,9 @@ def format_docs(docs):
|
|
133 |
# Join all formatted documents with double newlines
|
134 |
return "\n\n".join(formatted_docs)
|
135 |
|
136 |
-
|
|
|
|
|
137 |
from langchain_core.runnables import RunnablePassthrough
|
138 |
rag_chain = (
|
139 |
{"context": retriver| format_docs, "question": RunnablePassthrough()}
|
@@ -142,17 +157,13 @@ rag_chain = (
|
|
142 |
| StrOutputParser()
|
143 |
)
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
from langchain.chat_models import ChatOpenAI
|
150 |
from langchain.schema import AIMessage, HumanMessage
|
151 |
import openai
|
152 |
import os
|
153 |
import gradio as gr
|
154 |
|
155 |
-
llm = ChatOpenAI(temperature=
|
156 |
|
157 |
def reg(message, history):
|
158 |
history_langchain_format = []
|
@@ -162,6 +173,14 @@ def reg(message, history):
|
|
162 |
history_langchain_format.append(HumanMessage(content=message))
|
163 |
gpt_response = llm(history_langchain_format)
|
164 |
return rag_chain.invoke(message)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
-
gr.ChatInterface(reg).launch()
|
167 |
|
|
|
25 |
|
26 |
|
27 |
|
28 |
+
from langchain.chat_models import ChatOpenAI
|
29 |
+
from langchain.schema import AIMessage, HumanMessage
|
30 |
+
|
31 |
+
|
32 |
#csv loader
|
33 |
loader = CSVLoader(file_path='data.csv')
|
34 |
data=loader.load()
|
|
|
41 |
#embeding
|
42 |
embeding=OpenAIEmbeddings(openai_api_key=openai_api_key, model="text-embedding-3-small")
|
43 |
|
44 |
+
|
45 |
#import quantization
|
46 |
|
47 |
from langchain.vectorstores import Qdrant
|
|
|
57 |
url=qdrant_url,
|
58 |
prefer_grpc=True,
|
59 |
api_key=qdrant_api_key,
|
60 |
+
collection_name="llm_app",
|
61 |
quantization_config=models.BinaryQuantization(
|
62 |
binary=models.BinaryQuantizationConfig(
|
63 |
always_ram=True,
|
|
|
65 |
)
|
66 |
)
|
67 |
|
68 |
+
|
69 |
#qdrant client
|
70 |
qdrant_client = QdrantClient(
|
71 |
url=qdrant_url,
|
|
|
78 |
retriver=qdrant.as_retriever( search_type="similarity", search_kwargs={"k":2})
|
79 |
|
80 |
|
81 |
+
#search query
|
82 |
+
query="show me a best darmatology doctor in peshawar "
|
83 |
+
docs=retriver.get_relevant_documents(query)
|
84 |
+
|
85 |
+
|
86 |
from langchain import PromptTemplate
|
87 |
|
88 |
prompt = PromptTemplate(
|
89 |
template="""
|
90 |
# Your Role
|
91 |
+
You are a highly skilled AI specialized in healthcare and medical information retrieval. Your expertise lies in understanding the medical needs of patients and accurately matching them with the most suitable healthcare professionals, including but not limited to surgeons, dentists, dermatologists, cardiologists, neurologists, etc., based on the user's query and the provided context.
|
92 |
|
93 |
# Instruction
|
94 |
Your task is to answer the question using the following pieces of retrieved context delimited by XML tags.
|
|
|
99 |
</retrieved context>
|
100 |
|
101 |
# Constraint
|
102 |
+
1. Carefully analyze the user's question:
|
103 |
User's question:\n{question}\n
|
104 |
+
Your goal is to understand the user's needs and match them with the most relevant healthcare professional(s) from the provided context.
|
105 |
+
- Reflect on why the question was asked, and deliver an appropriate response based on the context you understand.
|
106 |
2. Select the most relevant information (the key details directly related to the question) from the retrieved context and use it to formulate an answer.
|
107 |
+
3. Generate a comprehensive, logical, and medically accurate answer. When generating the answer, include the following details about the healthcare professional:
|
108 |
+
• Name of the Professional
|
109 |
+
• City
|
110 |
+
• Specialization (e.g., Surgeon, Dentist, Cardiologist, etc.)
|
111 |
+
• Qualification (e.g., MBBS, FCPS, etc.)
|
112 |
+
• Years of Experience
|
113 |
+
• Patient Satisfaction Rate (if available)
|
114 |
+
• Average Time Spent with Patients (if available)
|
115 |
+
• Wait Time (if available)
|
116 |
+
• Hospital/Clinic Address
|
117 |
+
• Consultation Fee
|
118 |
+
• Profile Link (if available)
|
119 |
+
4. If the retrieved context does not contain enough relevant information, or if the documents are irrelevant, respond with 'I can't find the answer to that question in the material I have'.
|
120 |
+
5. Provide a complete answer to the user. Do not limit the information if there is more useful data available in the retrieved context.
|
121 |
+
6. At the end of the response, do not include any unnecessary metadata (such as Source, Row, or _id). Only focus on the healthcare professional's information relevant to the user's query.
|
122 |
|
123 |
# Question:
|
124 |
{question}""",
|
|
|
126 |
)
|
127 |
|
128 |
|
129 |
+
#import ChatOpenAI
|
130 |
+
# llm = ChatOpenAI(model_name="gpt-4o", temperature=0, openai_api_key=openai_api_key)
|
131 |
+
|
132 |
+
|
133 |
|
134 |
def format_docs(docs):
|
135 |
formatted_docs = []
|
|
|
146 |
# Join all formatted documents with double newlines
|
147 |
return "\n\n".join(formatted_docs)
|
148 |
|
149 |
+
#import strw
|
150 |
+
|
151 |
+
from langchain_core.output_parsers import StrOutputParser
|
152 |
from langchain_core.runnables import RunnablePassthrough
|
153 |
rag_chain = (
|
154 |
{"context": retriver| format_docs, "question": RunnablePassthrough()}
|
|
|
157 |
| StrOutputParser()
|
158 |
)
|
159 |
|
|
|
|
|
|
|
|
|
160 |
from langchain.chat_models import ChatOpenAI
|
161 |
from langchain.schema import AIMessage, HumanMessage
|
162 |
import openai
|
163 |
import os
|
164 |
import gradio as gr
|
165 |
|
166 |
+
llm = ChatOpenAI(temperature=0.5, model='gpt-4o', openai_api_key=openai_api_key)
|
167 |
|
168 |
def reg(message, history):
|
169 |
history_langchain_format = []
|
|
|
173 |
history_langchain_format.append(HumanMessage(content=message))
|
174 |
gpt_response = llm(history_langchain_format)
|
175 |
return rag_chain.invoke(message)
|
176 |
+
# Gradio ChatInterface
|
177 |
+
demo = gr.ChatInterface(
|
178 |
+
fn=reg,
|
179 |
+
title="Doctors Appointments Assistant",
|
180 |
+
theme="soft",
|
181 |
+
)
|
182 |
+
|
183 |
+
demo.launch(show_api=False)
|
184 |
+
|
185 |
|
|
|
186 |
|