File size: 2,791 Bytes
7215fad
 
 
6344d72
7215fad
 
 
 
 
6344d72
 
 
7215fad
 
 
6344d72
 
 
7215fad
d4f1e53
 
090096f
 
 
 
d4f1e53
090096f
d4f1e53
 
7215fad
6344d72
 
 
 
 
 
 
 
7215fad
 
d4f1e53
090096f
 
 
 
 
6344d72
090096f
7215fad
6344d72
 
 
d4f1e53
6344d72
 
090096f
 
7215fad
6344d72
7215fad
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import streamlit as st
import yfinance as yf
import pandas as pd
import plotly.graph_objects as go

def fetch_data(ticker, start_date, end_date):
    data = yf.download(ticker, start=start_date, end=end_date)
    return data

def calculate_indicators(data, window_short, window_long):
    data['High Short'] = data['High'].rolling(window=window_short).max()
    data['Low Short'] = data['Low'].rolling(window=window_short).min()
    return data

def identify_signals(data):
    data['Buy Signal'] = (data['Close'] > data['High Short'].shift(1))
    data['Sell Signal'] = (data['Close'] < data['Low Short'].shift(1))
    return data

def collect_signals(data):
    signals = pd.DataFrame()
    signals['Date'] = data.index
    signals['Price'] = data['Close']
    signals['Signal'] = None  # Initialize the column with None
    signals.loc[data['Buy Signal'], 'Signal'] = 'Buy'
    signals.loc[data['Sell Signal'], 'Signal'] = 'Sell'
    signals = signals.dropna(subset=['Signal'])
    return signals

def plot_data(data):
    fig = go.Figure()
    fig.add_trace(go.Scatter(x=data.index, y=data['Close'], name='Close Price', line=dict(color='blue')))
    buys = data[data['Buy Signal']]
    sells = data[data['Sell Signal']]
    fig.add_trace(go.Scatter(x=buys.index, y=buys['Close'], mode='markers', name='Buy Signal', marker_symbol='triangle-up', marker_color='green', marker_size=10))
    fig.add_trace(go.Scatter(x=sells.index, y=sells['Close'], mode='markers', name='Sell Signal', marker_symbol='triangle-down', marker_color='red', marker_size=10))
    fig.update_layout(title='Stock Price and Trading Signals', xaxis_title='Date', yaxis_title='Price', template='plotly_dark')
    return fig

def main():
    st.title("Enhanced Turtle Trading Strategy with Backtesting and Signal Table")
    ticker = st.sidebar.text_input("Enter the ticker symbol, e.g., 'AAPL'")
    start_date = st.sidebar.date_input("Select the start date")
    end_date = st.sidebar.date_input("Select the end date")
    window_short = st.sidebar.number_input("Short term window", min_value=5, max_value=60, value=20)
    window_long = st.sidebar.number_input("Long term window", min_value=5, max_value=120, value=55)

    if st.sidebar.button("Analyze"):
        data = fetch_data(ticker, start_date, end_date)
        if not data.empty:
            data = calculate_indicators(data, window_short, window_long)
            data = identify_signals(data)
            signals = collect_signals(data)
            fig = plot_data(data)
            st.plotly_chart(fig, use_container_width=True)
            st.write("Trading Signals:")
            st.dataframe(signals.style.hide_index())
        else:
            st.error("No data found for the selected ticker and date range.")

if __name__ == "__main__":
    main()