batik / train_model.py
ncoria's picture
edit embeddings_df key for train
2aacf30 verified
import os
import io
import pickle
import regex
import streamlit as st
import plotly.express as px
import numpy as np
import pandas as pd
import torch
from utils.seqIo import seqIo_reader
import pandas as pd
from PIL import Image
from pathlib import Path
from transformers import AutoProcessor, AutoModel
from tqdm import tqdm
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report
from utils.utils import create_embeddings_csv_io, process_dataset_in_mem, generate_embeddings_stream_io
# --server.maxUploadSize 3000
def get_unique_labels(label_list: list[str]):
label_set = set()
for label in label_list:
individual_labels = label.split('||')
for individual_label in individual_labels:
label_set.add(individual_label)
return list(label_set)
@st.cache_data
def get_train_test_split(train_embeds, numerical_labels, test_size=0.05, random_state=42):
return train_test_split(train_embeds, numerical_labels, test_size=test_size, random_state=random_state)
@st.cache_resource
def train_model(X_train, y_train, random_state=42):
# Train SVM Classifier
svm_clf = SVC(kernel='rbf', random_state=random_state, probability=True, verbose=True)
svm_clf.fit(X_train, y_train)
return svm_clf
def pickle_model(model):
pickled = io.BytesIO()
pickle.dump(model, pickled)
return pickled
if "embeddings_df_train" not in st.session_state:
st.session_state.embeddings_df_train = None
if "svm_clf" not in st.session_state:
st.session_state.svm_clf = None
st.session_state.report_df = None
st.session_state.accuracy = None
st.title('batik: frame classifier training')
st.text("Upload files to train classifier on.")
with st.form('embedding_generation_settings'):
seq_file = st.file_uploader("Choose a video file", type=['seq', 'mp4'])
annot_files = st.file_uploader("Choose an annotation File", type=['annot','csv'], accept_multiple_files=True)
downsample_rate = st.number_input('Downsample Rate',value=4)
submit_embed_settings = st.form_submit_button('Create Embeddings', type='secondary')
st.markdown("**(Optional)** Upload embeddings.")
embeddings_csv = st.file_uploader("Choose a .csv File", type=['csv'])
if submit_embed_settings and seq_file is not None and annot_files is not None:
video_embeddings, video_frames = generate_embeddings_stream_io([seq_file],
"SLIP",
downsample_rate,
False)
fnames = [seq_file.name]
embeddings_df = create_embeddings_csv_io(out="file",
fnames=fnames,
embeddings=video_embeddings,
frames=video_frames,
annotations=[annot_files],
test_fnames=None,
views=None,
conditions=None,
downsample_rate=downsample_rate)
st.session_state.embeddings_df_train = embeddings_df
elif embeddings_csv is not None:
embeddings_df = pd.read_csv(embeddings_csv)
st.session_state.embeddings_df_train = embeddings_df
else:
st.text('Please upload file(s).')
st.divider()
if st.session_state.embeddings_df_train is not None:
st.subheader("specify dataset preprocessing options")
st.text("Select frames with label(s) to include:")
with st.form('train_settings'):
label_list = st.session_state.embeddings_df_train['Label'].to_list()
unique_label_list = get_unique_labels(label_list)
specified_classes = st.multiselect("Label(s) included:", options=unique_label_list)
st.text("Select label(s) that should be removed:")
classes_to_remove = st.multiselect("Label(s) excluded:", options=unique_label_list)
max_class_size = st.number_input("(Optional) Specify max class size:", value=None)
shuffle_data = st.toggle("Shuffle data:")
train_model_clicked = st.form_submit_button("Train Model")
if train_model_clicked:
kwargs = {'embeddings_df' : st.session_state.embeddings_df_train,
'specified_classes' : specified_classes,
'classes_to_remove' : classes_to_remove,
'max_class_size' : max_class_size,
'animal_state' : None,
'view' : None,
'shuffle_data' : shuffle_data,
'test_videos' : None}
train_embeds, train_labels, train_images, _, _, _ = process_dataset_in_mem(**kwargs)
# Convert labels to numerical values
label_to_appear_first = 'other'
unique_labels = set(train_labels)
unique_labels.discard(label_to_appear_first)
label_to_index = {label_to_appear_first: 0}
label_to_index.update({label: idx + 1 for idx, label in enumerate(unique_labels)})
index_to_label = {idx: label for label, idx in label_to_index.items()}
numerical_labels = np.array([label_to_index[label] for label in train_labels])
print("Label Valence: ", label_to_index)
# Split data into train and test sets
X_train, X_test, y_train, y_test = get_train_test_split(train_embeds, numerical_labels, test_size=0.05, random_state=42)
with st.spinner("Model training in progress..."):
svm_clf = train_model(X_train, y_train)
# Predict on the test set
with st.spinner("In progress..."):
y_pred = svm_clf.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred, target_names=[index_to_label[idx] for idx in range(len(label_to_index))], output_dict=True)
report_df = pd.DataFrame(report).transpose()
# save results to session state
st.session_state.svm_clf = svm_clf
st.session_state.report_df = report_df
st.session_state.accuracy = accuracy
if st.session_state.svm_clf is not None:
pickled_model = pickle_model(st.session_state.svm_clf)
st.text(f"Eval Accuracy: {st.session_state.accuracy}")
st.subheader("Classification Report:")
st.dataframe(st.session_state.report_df)
st.download_button("Download model as .pkl file",
data=pickled_model,
file_name=f"{'_'.join(specified_classes)}_classifier.pkl")