next-playground's picture
Upload 2 files
16734a7 verified
raw
history blame
7.47 kB
import soundfile as sf
import torch
import os
import librosa
import numpy as np
import onnxruntime as ort
from pathlib import Path
from argparse import ArgumentParser
from tqdm import tqdm
class ConvTDFNet:
def __init__(self, target_name, L, dim_f, dim_t, n_fft, hop=1024):
super(ConvTDFNet, self).__init__()
self.dim_c = 4
self.dim_f = dim_f
self.dim_t = 2**dim_t
self.n_fft = n_fft
self.hop = hop
self.n_bins = self.n_fft // 2 + 1
self.chunk_size = hop * (self.dim_t - 1)
self.window = torch.hann_window(window_length=self.n_fft, periodic=True)
self.target_name = target_name
out_c = self.dim_c * 4 if target_name == "*" else self.dim_c
self.freq_pad = torch.zeros([1, out_c, self.n_bins - self.dim_f, self.dim_t])
self.n = L // 2
def stft(self, x):
x = x.reshape([-1, self.chunk_size])
x = torch.stft(
x,
n_fft=self.n_fft,
hop_length=self.hop,
window=self.window,
center=True,
return_complex=True,
)
x = torch.view_as_real(x)
x = x.permute([0, 3, 1, 2])
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape(
[-1, self.dim_c, self.n_bins, self.dim_t]
)
return x[:, :, : self.dim_f]
# Inversed Short-time Fourier transform (STFT).
def istft(self, x, freq_pad=None):
freq_pad = (
self.freq_pad.repeat([x.shape[0], 1, 1, 1])
if freq_pad is None
else freq_pad
)
x = torch.cat([x, freq_pad], -2)
c = 4 * 2 if self.target_name == "*" else 2
x = x.reshape([-1, c, 2, self.n_bins, self.dim_t]).reshape(
[-1, 2, self.n_bins, self.dim_t]
)
x = x.permute([0, 2, 3, 1])
x = x.contiguous()
x = torch.view_as_complex(x)
x = torch.istft(
x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True
)
return x.reshape([-1, c, self.chunk_size])
class Predictor:
def __init__(self, args):
self.args = args
self.model_ = ConvTDFNet(
target_name="vocals",
L=11,
dim_f=args["dim_f"],
dim_t=args["dim_t"],
n_fft=args["n_fft"]
)
if torch.cuda.is_available():
self.model = ort.InferenceSession(args['model_path'], providers=['CUDAExecutionProvider'])
else:
self.model = ort.InferenceSession(args['model_path'], providers=['CPUExecutionProvider'])
def demix(self, mix):
samples = mix.shape[-1]
margin = self.args["margin"]
chunk_size = self.args["chunks"] * 44100
assert not margin == 0, "margin cannot be zero!"
if margin > chunk_size:
margin = chunk_size
segmented_mix = {}
if self.args["chunks"] == 0 or samples < chunk_size:
chunk_size = samples
counter = -1
for skip in range(0, samples, chunk_size):
counter += 1
s_margin = 0 if counter == 0 else margin
end = min(skip + chunk_size + margin, samples)
start = skip - s_margin
segmented_mix[skip] = mix[:, start:end].copy()
if end == samples:
break
sources = self.demix_base(segmented_mix, margin_size=margin)
return sources
def demix_base(self, mixes, margin_size):
chunked_sources = []
progress_bar = tqdm(total=len(mixes))
progress_bar.set_description("Processing")
for mix in mixes:
cmix = mixes[mix]
sources = []
n_sample = cmix.shape[1]
model = self.model_
trim = model.n_fft // 2
gen_size = model.chunk_size - 2 * trim
pad = gen_size - n_sample % gen_size
mix_p = np.concatenate(
(np.zeros((2, trim)), cmix, np.zeros((2, pad)), np.zeros((2, trim))), 1
)
mix_waves = []
i = 0
while i < n_sample + pad:
waves = np.array(mix_p[:, i : i + model.chunk_size])
mix_waves.append(waves)
i += gen_size
mix_waves = torch.tensor(np.array(mix_waves), dtype=torch.float32)
with torch.no_grad():
_ort = self.model
spek = model.stft(mix_waves)
if self.args["denoise"]:
spec_pred = (
-_ort.run(None, {"input": -spek.cpu().numpy()})[0] * 0.5
+ _ort.run(None, {"input": spek.cpu().numpy()})[0] * 0.5
)
tar_waves = model.istft(torch.tensor(spec_pred))
else:
tar_waves = model.istft(
torch.tensor(_ort.run(None, {"input": spek.cpu().numpy() })[0])
)
tar_signal = (
tar_waves[:, :, trim:-trim]
.transpose(0, 1)
.reshape(2, -1)
.numpy()[:, :-pad]
)
start = 0 if mix == 0 else margin_size
end = None if mix == list(mixes.keys())[::-1][0] else -margin_size
if margin_size == 0:
end = None
sources.append(tar_signal[:, start:end])
progress_bar.update(1)
chunked_sources.append(sources)
_sources = np.concatenate(chunked_sources, axis=-1)
progress_bar.close()
return _sources
def predict(self, file_path):
mix, rate = librosa.load(file_path, mono=False, sr=44100)
if mix.ndim == 1:
mix = np.asfortranarray([mix, mix])
mix = mix.T
sources = self.demix(mix.T)
opt = sources[0].T
return (mix - opt, opt, rate)
def main():
parser = ArgumentParser()
parser.add_argument("files", nargs="+", type=Path, default=[], help="Source audio path")
parser.add_argument("-o", "--output", type=Path, default=Path("separated"), help="Output folder")
parser.add_argument("-m", "--model_path", type=Path, help="MDX Net ONNX Model path")
parser.add_argument("-d", "--no-denoise", dest="denoise", action="store_false", default=True, help="Disable denoising")
parser.add_argument("-M", "--margin", type=int, default=44100, help="Margin")
parser.add_argument("-c", "--chunks", type=int, default=15, help="Chunk size")
parser.add_argument("-F", "--n_fft", type=int, default=6144)
parser.add_argument("-t", "--dim_t", type=int, default=8)
parser.add_argument("-f", "--dim_f", type=int, default=2048)
args = parser.parse_args()
dict_args = vars(args)
os.makedirs(args.output, exist_ok=True)
for file_path in args.files:
predictor = Predictor(args=dict_args)
vocals, no_vocals, sampling_rate = predictor.predict(file_path)
filename = os.path.splitext(os.path.split(file_path)[-1])[0]
sf.write(os.path.join(args.output, filename+"_no_vocals.wav"), no_vocals, sampling_rate)
sf.write(os.path.join(args.output, filename+"_vocals.wav"), vocals, sampling_rate)
if __name__ == "__main__":
main()