|
import numpy as np |
|
import gradio as gr |
|
import cv2 |
|
|
|
from models.HybridGNet2IGSC import Hybrid |
|
from utils.utils import scipy_to_torch_sparse, genMatrixesLungsHeart |
|
import scipy.sparse as sp |
|
import torch |
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
hybrid = None |
|
|
|
def getDenseMask(landmarks): |
|
RL = landmarks[0:44] |
|
LL = landmarks[44:94] |
|
H = landmarks[94:] |
|
|
|
img = np.zeros([1024,1024], dtype = 'uint8') |
|
|
|
RL = RL.reshape(-1, 1, 2).astype('int') |
|
LL = LL.reshape(-1, 1, 2).astype('int') |
|
H = H.reshape(-1, 1, 2).astype('int') |
|
|
|
img = cv2.drawContours(img, [RL], -1, 1, -1) |
|
img = cv2.drawContours(img, [LL], -1, 1, -1) |
|
img = cv2.drawContours(img, [H], -1, 2, -1) |
|
|
|
return img |
|
|
|
|
|
def drawOnTop(img, landmarks): |
|
output = getDenseMask(landmarks) |
|
|
|
image = np.zeros([1024, 1024, 3]) |
|
image[:,:,0] = img + 0.3 * (output == 1).astype('float') - 0.1 * (output == 2).astype('float') |
|
image[:,:,1] = img + 0.3 * (output == 2).astype('float') - 0.1 * (output == 1).astype('float') |
|
image[:,:,2] = img - 0.1 * (output == 1).astype('float') - 0.2 * (output == 2).astype('float') |
|
|
|
image = np.clip(image, 0, 1) |
|
|
|
RL, LL, H = landmarks[0:44], landmarks[44:94], landmarks[94:] |
|
|
|
|
|
|
|
for l in RL: |
|
image = cv2.circle(image, (int(l[0]), int(l[1])), 1, (1, 1, 0), -1) |
|
for l in LL: |
|
image = cv2.circle(image, (int(l[0]), int(l[1])), 1, (1, 1, 0), -1) |
|
for l in H: |
|
image = cv2.circle(image, (int(l[0]), int(l[1])), 1, (0, 1, 1), -1) |
|
|
|
return image |
|
|
|
|
|
def loadModel(device): |
|
A, AD, D, U = genMatrixesLungsHeart() |
|
N1 = A.shape[0] |
|
N2 = AD.shape[0] |
|
|
|
A = sp.csc_matrix(A).tocoo() |
|
AD = sp.csc_matrix(AD).tocoo() |
|
D = sp.csc_matrix(D).tocoo() |
|
U = sp.csc_matrix(U).tocoo() |
|
|
|
D_ = [D.copy()] |
|
U_ = [U.copy()] |
|
|
|
config = {} |
|
|
|
config['n_nodes'] = [N1, N1, N1, N2, N2, N2] |
|
A_ = [A.copy(), A.copy(), A.copy(), AD.copy(), AD.copy(), AD.copy()] |
|
|
|
A_t, D_t, U_t = ([scipy_to_torch_sparse(x).to(device) for x in X] for X in (A_, D_, U_)) |
|
|
|
config['latents'] = 64 |
|
config['inputsize'] = 1024 |
|
|
|
f = 32 |
|
config['filters'] = [2, f, f, f, f//2, f//2, f//2] |
|
config['skip_features'] = f |
|
|
|
hybrid = Hybrid(config.copy(), D_t, U_t, A_t).to(device) |
|
hybrid.load_state_dict(torch.load("weights/weights.pt", map_location=torch.device(device))) |
|
hybrid.eval() |
|
|
|
return hybrid |
|
|
|
|
|
def pad_to_square(img): |
|
h, w = img.shape[:2] |
|
|
|
if h > w: |
|
padw = (h - w) |
|
auxw = padw % 2 |
|
img = np.pad(img, ((0, 0), (padw//2, padw//2 + auxw)), 'constant') |
|
|
|
padh = 0 |
|
auxh = 0 |
|
|
|
else: |
|
padh = (w - h) |
|
auxh = padh % 2 |
|
img = np.pad(img, ((padh//2, padh//2 + auxh), (0, 0)), 'constant') |
|
|
|
padw = 0 |
|
auxw = 0 |
|
|
|
return img, (padh, padw, auxh, auxw) |
|
|
|
|
|
def preprocess(input_img): |
|
img, padding = pad_to_square(input_img) |
|
|
|
h, w = img.shape[:2] |
|
if h != 1024 or w != 1024: |
|
img = cv2.resize(img, (1024, 1024), interpolation = cv2.INTER_CUBIC) |
|
|
|
return img, (h, w, padding) |
|
|
|
|
|
def segment(input_img): |
|
global hybrid, device |
|
|
|
if hybrid is None: |
|
hybrid = loadModel(device) |
|
|
|
input_img = cv2.imread(input_img, 0) / 255.0 |
|
|
|
img, (h, w, padding) = preprocess(input_img) |
|
|
|
data = torch.from_numpy(img).unsqueeze(0).unsqueeze(0).to(device).float() |
|
|
|
with torch.no_grad(): |
|
output = hybrid(data)[0].cpu().numpy().reshape(-1, 2) * 1024 |
|
|
|
return drawOnTop(img, output) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo = gr.Interface(segment, gr.Image(type="filepath"), "image") |
|
demo.launch() |
|
|