File size: 4,346 Bytes
a557e27
a4d579b
 
 
 
 
 
 
 
 
 
 
c83187d
a4d579b
 
 
 
 
 
 
 
 
 
 
 
c83187d
 
a4d579b
 
c83187d
a4d579b
e1a76a5
81258cc
cfdc9de
17aca0b
81258cc
7f4ceb4
a4d579b
 
 
c83187d
a4d579b
dd11e70
f187dab
 
81258cc
a4d579b
18648f2
81258cc
a4d579b
956f515
 
a4d579b
 
 
68fccfb
c83187d
a4d579b
6cf109f
a4d579b
 
 
 
 
 
 
 
c28a6ea
a4d579b
 
 
 
 
 
 
 
 
 
 
 
68fccfb
a4d579b
 
a557e27
ae7bc30
a4d579b
 
ae7bc30
a557e27
a4d579b
 
 
 
 
 
a557e27
 
a4d579b
 
 
 
 
 
 
 
 
 
 
 
 
 
a557e27
a4d579b
 
 
 
 
 
 
 
 
a557e27
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import os
import streamlit as st

from langchain.embeddings import HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings
from langchain.vectorstores.faiss import FAISS
from huggingface_hub import snapshot_download

from langchain.callbacks import StreamlitCallbackHandler
from langchain.agents import OpenAIFunctionsAgent, AgentExecutor
from langchain.agents.agent_toolkits import create_retriever_tool
from langchain.agents.openai_functions_agent.agent_token_buffer_memory import (
    AgentTokenBufferMemory,
)
from langchain.chat_models import ChatOpenAI
from langchain.schema import SystemMessage, AIMessage, HumanMessage
from langchain.prompts import MessagesPlaceholder
from langsmith import Client

client = Client()

st.set_page_config(
    page_title="Investor Education ChatChain",
    page_icon="πŸ“–",
    layout="wide",
    initial_sidebar_state="collapsed",
)

#Load API Key
api_key = os.environ["OPENAI_API_KEY"]   

#### sidebar section 1 ####

site_options = {'US': 'vanguard_embeddings_US',
                'AUS': 'vanguard-embeddings'}

site_options_list = list(site_options.keys())

site_radio = st.radio(
    "Which Vanguard website location would you want to chat to?",
    ('US', 'AUS'))

@st.cache_data
def load_vectorstore(site):
    '''load embeddings and vectorstore'''
        
    emb = HuggingFaceEmbeddings(model_name="all-mpnet-base-v2")

    vectorstore = FAISS.load_local(site_options[site], emb,allow_dangerous_deserialization=True)
    
    return vectorstore.as_retriever(search_kwargs={"k": 4})


tool = create_retriever_tool(
    load_vectorstore(site_radio),
    "search_vaguard_website",
    "Searches and returns documents regarding the Vanguard website across US and AUS locations. The websites provide investment related information to the user")

tools = [tool]
llm = ChatOpenAI(temperature=0, streaming=True, model="gpt-4o")
message = SystemMessage(
    content=(
        "You are a helpful chatbot who is tasked with answering questions about investments using informationn that has been scraped from a website to answer the users question accurately."
    "Do not use any information not provided in the website context."
        "Unless otherwise explicitly stated, it is probably fair to assume that questions are about the CFA program and materials. "
        "If there is any ambiguity, you probably assume they are about that."
    )
)

prompt = OpenAIFunctionsAgent.create_prompt(
    system_message=message,
    extra_prompt_messages=[MessagesPlaceholder(variable_name="history")],
)
agent = OpenAIFunctionsAgent(llm=llm, tools=tools, prompt=prompt)
agent_executor = AgentExecutor(
    agent=agent,
    tools=tools,
    verbose=True,
    return_intermediate_steps=True,
)
memory = AgentTokenBufferMemory(llm=llm)
starter_message = "Ask me anything about information on the Vanguard US/AUS websites!"
if "messages" not in st.session_state or st.sidebar.button("Clear message history"):
    st.session_state["messages"] = [AIMessage(content=starter_message)]


def send_feedback(run_id, score):
    client.create_feedback(run_id, "user_score", score=score)


for msg in st.session_state.messages:
    if isinstance(msg, AIMessage):
        st.chat_message("assistant").write(msg.content)
    elif isinstance(msg, HumanMessage):
        st.chat_message("user").write(msg.content)
    memory.chat_memory.add_message(msg)


if prompt := st.chat_input(placeholder=starter_message):
    st.chat_message("user").write(prompt)
    with st.chat_message("assistant"):
        st_callback = StreamlitCallbackHandler(st.container())
        response = agent_executor(
            {"input": prompt, "history": st.session_state.messages},
            callbacks=[st_callback],
            include_run_info=True,
        )
        st.session_state.messages.append(AIMessage(content=response["output"]))
        st.write(response["output"])
        memory.save_context({"input": prompt}, response)
        st.session_state["messages"] = memory.buffer
        run_id = response["__run"].run_id

        col_blank, col_text, col1, col2 = st.columns([10, 2, 1, 1])
        with col_text:
            st.text("Feedback:")

        # with col1:
        #     st.button("πŸ‘", on_click=send_feedback, args=(run_id, 1))

        # with col2:
        #     st.button("πŸ‘Ž", on_click=send_feedback, args=(run_id, 0)