fintweet-GPT-Search / variables.py
nickmuchi's picture
Update variables.py
1dc65be
raw
history blame
6.97 kB
##Variables
import os
import streamlit as st
import pathlib
from langchain.embeddings import HuggingFaceEmbeddings,HuggingFaceInstructEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.chat_models.openai import ChatOpenAI
from langchain import VectorDBQA
import pandas as pd
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
AIMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from langchain.schema import (
AIMessage,
HumanMessage,
SystemMessage
)
from optimum.onnxruntime import ORTModelForSequenceClassification
from transformers import pipeline, AutoTokenizer
from optimum.pipelines import pipeline
import tweepy
import pandas as pd
import numpy as np
import plotly_express as px
import plotly.graph_objects as go
from datetime import datetime as dt
from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, DataReturnMode
from datasets import Dataset
from huggingface_hub import Repository
@st.experimental_singleton(suppress_st_warning=True)
def load_models():
'''load sentimant and topic clssification models'''
sent_pipe = pipeline(task,model=sent_model_id, tokenizer=sent_model_id)
topic_pipe = pipeline(task, model=topic_model_id, tokenizer=topic_model_id)
return sent_pipe, topic_pipe
@st.cache(allow_output_mutation=True, suppress_st_warning=True)
def process_tweets(df,df_users):
'''process tweets into a dataframe'''
df['author'] = df['author'].astype(np.int64)
df_merged = df.merge(df_users, on='author')
tweet_list = df_merged['tweet'].tolist()
sentiment, topic = pd.DataFrame(sentiment_classifier(tweet_list)), pd.DataFrame(topic_classifier(tweet_list))
sentiment.rename(columns={'score':'sentiment_confidence','label':'sentiment'}, inplace=True)
topic.rename(columns={'score':'topic_confidence','label':'topic'}, inplace=True)
df_group = pd.concat([df_merged,sentiment,topic],axis=1)
df_group[['sentiment_confidence','topic_confidence']] = df_group[['sentiment_confidence','topic_confidence']].round(2).mul(100)
df_tweets = df_group[['creation_time','username','tweet','sentiment','topic','sentiment_confidence','topic_confidence']]
df_tweets = df_tweets.sort_values(by=['creation_time'],ascending=False)
return df_tweets
@st.experimental_singleton(suppress_st_warning=True)
def embed_tweets(file,model,query,_prompt):
'''Process file with latest tweets'''
# Split tweets int chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
texts = text_splitter.split_text(file)
if model == "hkunlp/instructor-large":
emb = HuggingFaceInstructEmbeddings(model_name=model,
query_instruction='Represent the Financial question for retrieving supporting documents: ',
embed_instruction='Represent the Financial document for retrieval: ')
elif model == "sentence-transformers/all-mpnet-base-v2":
emb = HuggingFaceEmbeddings(model_name=model)
docsearch = FAISS.from_texts(texts, emb)
chain_type_kwargs = {"prompt": _prompt}
chain = VectorDBQA.from_chain_type(
ChatOpenAI(temperature=0),
chain_type="stuff",
vectorstore=docsearch,
chain_type_kwargs=chain_type_kwargs,
k=5
)
result = chain({"query": query})
return result
CONFIG = {
"bearer_token": os.environ.get("bearer_token")
}
sent_model_id = 'nickmuchi/optimum-finbert-tone-finetuned-fintwitter-classification'
topic_model_id = 'nickmuchi/optimum-finbert-tone-finetuned-finance-topic-classification'
task = 'text-classification'
sentiments = {"0": "Bearish", "1": "Bullish", "2": "Neutral"}
topics = {
"0": "Analyst Update",
"1": "Fed | Central Banks",
"2": "Company | Product News",
"3": "Treasuries | Corporate Debt",
"4": "Dividend",
"5": "Earnings",
"6": "Energy | Oil",
"7": "Financials",
"8": "Currencies",
"9": "General News | Opinion",
"10": "Gold | Metals | Materials",
"11": "IPO",
"12": "Legal | Regulation",
"13": "M&A | Investments",
"14": "Macro",
"15": "Markets",
"16": "Politics",
"17": "Personnel Change",
"18": "Stock Commentary",
"19": "Stock Movement",
}
user_name = [
"Investing.com",
"(((The Daily Shot)))",
"Bloomberg Markets",
"FirstSquawk",
"MarketWatch",
"markets",
"FinancialTimes",
"CNBC",
"ReutersBiz",
"BreakingNews",
"LiveSquawk",
"NYSE",
"WSJmarkets",
"FT",
"TheStreet",
"ftfinancenews",
"BloombergTV",
"Nasdaq",
"NYSE",
"federalreserve",
"NewYorkFed",
"sffed",
"WSJCentralBanks",
"RichmondFed",
"ecb",
"stlouisfed",
"WorldBank",
"MarketCurrents",
"OpenOutcrier",
"BullTradeFinder",
"WallStChatter",
"Briefingcom",
"SeekingAlpha",
"realDonaldTrump",
"AswathDamodaran",
"ukarlewitz",
"alphatrends",
"Investor666",
"ACInvestorBlog",
"ZorTrades",
"ScottNations",
"TradersCorner",
"TraderGoalieOne",
"option_snipper",
"jasonleavitt",
"LMT978",
"OptionsHawk",
"andrewbtodd",
"Terri1618",
"SunriseTrader",
"traderstewie",
"TMLTrader",
"IncredibleTrade",
"NYFedResearch",
"YahooFinance",
"business",
"economics",
"IMFNews",
"Market_Screener",
"QuickTake",
"NewsFromBW",
"BNCommodities",
]
user_id = [
"988955288",
"423769635",
"69620713",
"59393368",
"3295423333",
"624413",
"69620713",
"4898091",
"20402945",
"15110357",
"6017542",
"21323268",
"28164923",
"18949452",
"15281391",
"11014272",
"35002876",
"18639734",
"21323268",
"26538229",
"15072071",
"117237387",
"327484803",
"16532451",
"83466368",
"71567590",
"27860681",
"15296897",
"2334614718",
"2222635612",
"3382363841",
"72928001",
"23059499",
"25073877",
"33216611",
"37284991",
"15246621",
"293458690",
"55561590",
"18560146",
"244978426",
"85523269",
"276714687",
"2806294664",
"16205561",
"1064700308",
"61342056",
"184126162",
"405820375",
"787439438964068352",
"52166809",
"2715646770",
"47247213",
"374672240",
"19546277",
"34713362",
"144274618",
"25098482",
"102325185",
"252751061",
"976297820532518914",
"804556370",
]
sentiment_classifier, topic_classifier = load_models()
def convert_user_names(user_name: list):
'''convert user_names to tweepy format'''
users = []
for user in user_name:
users.append(f"from:{user}")
return " OR ".join(users)