Update app.py
Browse files
app.py
CHANGED
@@ -19,29 +19,13 @@ try:
|
|
19 |
"nickprock/multi-sentence-BERTino",
|
20 |
"nickprock/sentence-bert-base-italian-uncased",
|
21 |
"nickprock/sentence-bert-base-italian-xxl-uncased",
|
22 |
-
"nickprock/
|
23 |
]
|
24 |
|
25 |
models = {name: SentenceTransformer(name) for name in model_names}
|
26 |
annoy_indexes1 = {} # Store Annoy indexes for sentence1
|
27 |
annoy_indexes2 = {} # Store Annoy indexes for sentence2
|
28 |
|
29 |
-
def build_annoy_index(model_name, sentences):
|
30 |
-
"""Builds an Annoy index for a given model and sentences."""
|
31 |
-
model = models[model_name]
|
32 |
-
embeddings = model.encode(sentences)
|
33 |
-
embedding_dim = embeddings.shape[1]
|
34 |
-
annoy_index = AnnoyIndex(embedding_dim, "angular") # Use angular distance for cosine similarity
|
35 |
-
for i, embedding in enumerate(embeddings):
|
36 |
-
annoy_index.add_item(i, embedding)
|
37 |
-
annoy_index.build(10) # Build with 10 trees
|
38 |
-
return annoy_index
|
39 |
-
|
40 |
-
# Build Annoy indexes for each model
|
41 |
-
for model_name in model_names:
|
42 |
-
annoy_indexes1[model_name] = build_annoy_index(model_name, sentences1)
|
43 |
-
annoy_indexes2[model_name] = build_annoy_index(model_name, sentences2)
|
44 |
-
|
45 |
def find_similar_sentence_annoy(sentence, model_name, sentence_list, annoy_index):
|
46 |
"""Finds the most similar sentence using Annoy."""
|
47 |
model = models[model_name]
|
@@ -50,10 +34,18 @@ try:
|
|
50 |
best_sentence_index = nearest_neighbors[0]
|
51 |
return sentence_list[best_sentence_index]
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
def compare_models_annoy(sentence, model1_name, model2_name, model3_name, model4_name):
|
54 |
"""Compares the results of different models using Annoy."""
|
55 |
sentence1_results = {}
|
56 |
sentence2_results = {}
|
|
|
57 |
|
58 |
sentence1_results[model1_name] = find_similar_sentence_annoy(sentence, model1_name, sentences1, annoy_indexes1)
|
59 |
sentence1_results[model2_name] = find_similar_sentence_annoy(sentence, model2_name, sentences1, annoy_indexes1)
|
@@ -65,21 +57,30 @@ try:
|
|
65 |
sentence2_results[model3_name] = find_similar_sentence_annoy(sentence, model3_name, sentences2, annoy_indexes2)
|
66 |
sentence2_results[model4_name] = find_similar_sentence_annoy(sentence, model4_name, sentences2, annoy_indexes2)
|
67 |
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
def format_results(sentence1_results, sentence2_results):
|
71 |
"""Formats the results for display in Gradio."""
|
72 |
output_text = ""
|
73 |
for model_name in model_names:
|
74 |
output_text += f"**{model_name}**\n"
|
75 |
output_text += f"Most Similar Sentence from sentence1: {sentence1_results[model_name]}\n"
|
76 |
-
output_text += f"Most Similar Sentence from sentence2: {sentence2_results[model_name]}\n
|
|
|
77 |
return output_text
|
78 |
|
79 |
def gradio_interface(sentence, model1_name, model2_name, model3_name, model4_name):
|
80 |
"""Gradio interface function."""
|
81 |
-
sentence1_results, sentence2_results = compare_models_annoy(
|
82 |
-
|
|
|
|
|
83 |
|
84 |
iface = gr.Interface(
|
85 |
fn=gradio_interface,
|
|
|
19 |
"nickprock/multi-sentence-BERTino",
|
20 |
"nickprock/sentence-bert-base-italian-uncased",
|
21 |
"nickprock/sentence-bert-base-italian-xxl-uncased",
|
22 |
+
"nickprock/Italian-ModernBERT-base-embed-mmarco-mnrl",
|
23 |
]
|
24 |
|
25 |
models = {name: SentenceTransformer(name) for name in model_names}
|
26 |
annoy_indexes1 = {} # Store Annoy indexes for sentence1
|
27 |
annoy_indexes2 = {} # Store Annoy indexes for sentence2
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
def find_similar_sentence_annoy(sentence, model_name, sentence_list, annoy_index):
|
30 |
"""Finds the most similar sentence using Annoy."""
|
31 |
model = models[model_name]
|
|
|
34 |
best_sentence_index = nearest_neighbors[0]
|
35 |
return sentence_list[best_sentence_index]
|
36 |
|
37 |
+
def calculate_similarity(sentence1, sentence2, model):
|
38 |
+
"""Calculates the cosine similarity between two sentences using a given model."""
|
39 |
+
embedding1 = model.encode(sentence1, convert_to_tensor=True)
|
40 |
+
embedding2 = model.encode(sentence2, convert_to_tensor=True)
|
41 |
+
similarity = util.cos_sim(embedding1, embedding2).item()
|
42 |
+
return similarity
|
43 |
+
|
44 |
def compare_models_annoy(sentence, model1_name, model2_name, model3_name, model4_name):
|
45 |
"""Compares the results of different models using Annoy."""
|
46 |
sentence1_results = {}
|
47 |
sentence2_results = {}
|
48 |
+
similarity_results = {}
|
49 |
|
50 |
sentence1_results[model1_name] = find_similar_sentence_annoy(sentence, model1_name, sentences1, annoy_indexes1)
|
51 |
sentence1_results[model2_name] = find_similar_sentence_annoy(sentence, model2_name, sentences1, annoy_indexes1)
|
|
|
57 |
sentence2_results[model3_name] = find_similar_sentence_annoy(sentence, model3_name, sentences2, annoy_indexes2)
|
58 |
sentence2_results[model4_name] = find_similar_sentence_annoy(sentence, model4_name, sentences2, annoy_indexes2)
|
59 |
|
60 |
+
# Calculate similarity between the retrieved sentences
|
61 |
+
for model_name in model_names:
|
62 |
+
similarity_results[model_name] = calculate_similarity(
|
63 |
+
sentence1_results[model_name], sentence2_results[model_name], models[model_name]
|
64 |
+
)
|
65 |
+
|
66 |
+
return sentence1_results, sentence2_results, similarity_results
|
67 |
|
68 |
+
def format_results(sentence1_results, sentence2_results, similarity_results):
|
69 |
"""Formats the results for display in Gradio."""
|
70 |
output_text = ""
|
71 |
for model_name in model_names:
|
72 |
output_text += f"**{model_name}**\n"
|
73 |
output_text += f"Most Similar Sentence from sentence1: {sentence1_results[model_name]}\n"
|
74 |
+
output_text += f"Most Similar Sentence from sentence2: {sentence2_results[model_name]}\n"
|
75 |
+
output_text += f"Similarity between retrieved sentences: {similarity_results[model_name]:.4f}\n\n"
|
76 |
return output_text
|
77 |
|
78 |
def gradio_interface(sentence, model1_name, model2_name, model3_name, model4_name):
|
79 |
"""Gradio interface function."""
|
80 |
+
sentence1_results, sentence2_results, similarity_results = compare_models_annoy(
|
81 |
+
sentence, model1_name, model2_name, model3_name, model4_name
|
82 |
+
)
|
83 |
+
return format_results(sentence1_results, sentence2_results, similarity_results)
|
84 |
|
85 |
iface = gr.Interface(
|
86 |
fn=gradio_interface,
|