Spaces:
Sleeping
Sleeping
File size: 6,385 Bytes
57c87c9 2adbdb9 3170ddb 2adbdb9 3170ddb 57c87c9 1396667 2adbdb9 1396667 57c87c9 3170ddb 2adbdb9 3170ddb 1396667 57c87c9 1396667 57c87c9 1396667 57c87c9 3170ddb 57c87c9 2adbdb9 57c87c9 2adbdb9 57c87c9 1396667 b864a26 1396667 2adbdb9 1396667 2adbdb9 1396667 2adbdb9 1396667 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import dataclasses
from multiprocessing import cpu_count
import tqdm
import requests
import streamlit as st
import pandas as pd
from datasets import Dataset, load_dataset
from paperswithcode import PapersWithCodeClient
@dataclasses.dataclass(frozen=True)
class PaperInfo:
date: str
arxiv_id: str
github: str
title: str
paper_page: str
upvotes: int
num_comments: int
def get_df(start_date: str = None, end_date: str = None) -> pd.DataFrame:
"""
Load the initial dataset as a Pandas dataframe.
One can optionally specify a start_date and end_date to only include data between these dates.
"""
df = pd.merge(
left=load_dataset("hysts-bot-data/daily-papers", split="train").to_pandas(),
right=load_dataset("hysts-bot-data/daily-papers-stats", split="train").to_pandas(),
on="arxiv_id",
)
df = df[::-1].reset_index(drop=True)
paper_info = []
for _, row in tqdm.auto.tqdm(df.iterrows(), total=len(df)):
info = PaperInfo(
**row,
paper_page=f"https://huggingface.co/papers/{row.arxiv_id}",
)
paper_info.append(info)
df = pd.DataFrame([dataclasses.asdict(info) for info in paper_info])
# set date as index
df = df.set_index('date')
df.index = pd.to_datetime(df.index)
if start_date is not None and end_date is not None:
# only include data between start_date and end_date
df = df[(df.index >= start_date) & (df.index <= end_date)]
return df
def get_github_url(client: PapersWithCodeClient, paper_title: str) -> str:
"""
Get the Github URL for a paper.
"""
repo_url = ""
try:
# get paper ID
results = client.paper_list(q=paper_title).results
paper_id = results[0].id
# get paper
paper = client.paper_get(paper_id=paper_id)
# get repositories
repositories = client.paper_repository_list(paper_id=paper.id).results
for repo in repositories:
if repo.is_official:
repo_url = repo.url
except:
pass
return repo_url
def add_metadata_batch(batch, client: PapersWithCodeClient):
"""
Add metadata to a batch of papers.
"""
# get Github URLs for all papers in the batch
github_urls = []
for paper_title in batch["title"]:
github_url = get_github_url(client, paper_title)
github_urls.append(github_url)
# overwrite the Github links
batch["github"] = github_urls
return batch
def add_hf_assets(batch):
"""
Add Hugging Face assets to a batch of papers.
"""
num_spaces = []
num_models = []
num_datasets = []
for arxiv_id in batch["arxiv_id"]:
if arxiv_id != "":
response = requests.get(f"https://huggingface.co/api/arxiv/{arxiv_id}/repos")
result = response.json()
num_spaces_example = len(result["spaces"])
num_models_example = len(result["models"])
num_datasets_example = len(result["datasets"])
else:
num_spaces_example = 0
num_models_example = 0
num_datasets_example = 0
num_spaces.append(num_spaces_example)
num_models.append(num_models_example)
num_datasets.append(num_datasets_example)
batch["num_models"] = num_models
batch["num_datasets"] = num_datasets
batch["num_spaces"] = num_spaces
return batch
def check_hf_mention(batch):
"""
Check if a paper mentions Hugging Face in the README.
"""
hf_mentions = []
for github_url in batch["github"]:
hf_mention = 0
if github_url != "":
# get README text using Github API
owner = github_url.split("/")[-2]
repo = github_url.split("/")[-1]
branch = "main"
url = f"https://raw.githubusercontent.com/{owner}/{repo}/{branch}/README.md"
response = requests.get(url)
if response.status_code != 200:
# try master branch as second attempt
branch = "master"
url = f"https://raw.githubusercontent.com/{owner}/{repo}/{branch}/README.md"
response = requests.get(url)
if response.status_code == 200:
# get text
text = response.text
if "huggingface" in text.lower() or "hugging face" in text.lower():
hf_mention = 1
hf_mentions.append(hf_mention)
# overwrite the Github links
batch["hf_mention"] = hf_mentions
return batch
def process_data(start_date: str, end_date: str) -> pd.DataFrame:
"""
Load the dataset and enrich it with metadata.
"""
# step 1. load as HF dataset
df = get_df(start_date, end_date)
dataset = Dataset.from_pandas(df)
# step 2. enrich using PapersWithCode API
dataset = dataset.map(add_metadata_batch, batched=True, batch_size=4, num_proc=cpu_count(), fn_kwargs={"client": PapersWithCodeClient()})
# step 3. enrich using Hugging Face API
dataset = dataset.map(add_hf_assets, batched=True, batch_size=4, num_proc=cpu_count())
# step 4. check if Hugging Face is mentioned in the README
dataset = dataset.map(check_hf_mention, batched=True, batch_size=4, num_proc=cpu_count())
# return as Pandas dataframe
# making sure that the date is set as index
dataframe = dataset.to_pandas()
dataframe = dataframe.set_index('date')
dataframe.index = pd.to_datetime(dataframe.index)
return dataframe
@st.cache_data
def get_data() -> pd.DataFrame:
# step 1: load pre-processed data
df = load_dataset("nielsr/daily-papers-enriched", split="train").to_pandas()
df = df.set_index('date')
df = df.sort_index()
df.index = pd.to_datetime(df.index)
# step 2: check how much extra data we need to process
latest_day = df.iloc[-1].name.strftime('%Y-%m-%d')
today = pd.Timestamp.today().strftime('%Y-%m-%d')
print("Latest day:", latest_day)
print("Today:", today)
# step 3: process the missing data
if latest_day < today:
print(f"Processing data from {latest_day} to {today}")
new_df = process_data(start_date=latest_day, end_date=today)
print("Original df:", df.head())
print("New df:", new_df.head())
df = pd.concat([df, new_df])
df = df.sort_index()
return df |