Spaces:
Sleeping
Sleeping
import torch | |
from torch.utils.data import Dataset, DataLoader | |
class TextDataset(Dataset): | |
def __init__(self, data, block_size): | |
self.data = data | |
self.block_size = block_size | |
def __len__(self): | |
return len(self.data) - self.block_size | |
def __getitem__(self, idx): | |
x = self.data[idx:idx + self.block_size] | |
y = self.data[idx + 1:idx + self.block_size + 1] | |
return x, y | |
def create_dataloaders(text, tokenizer, config, device): | |
data = torch.tensor(tokenizer.encode(text), dtype=torch.long) | |
n = int(0.9 * len(data)) | |
train_data = data[:n] | |
val_data = data[n:] | |
train_dataset = TextDataset(train_data, config.block_size) | |
val_dataset = TextDataset(val_data, config.block_size) | |
train_loader = DataLoader( | |
train_dataset, | |
batch_size=config.batch_size, | |
shuffle=True, | |
pin_memory=True | |
) | |
val_loader = DataLoader( | |
val_dataset, | |
batch_size=config.batch_size, | |
shuffle=False, | |
pin_memory=True | |
) | |
return train_loader, val_loader |