Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,47 +1,99 @@
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
3 |
-
import
|
4 |
-
|
5 |
-
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
face_detector = pipeline('face-detection', model='facebook/facemask-plugin-fasterrcnn')
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
14 |
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
|
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
-
st.title("Multiple Face Detection using Hugging Face")
|
23 |
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
if
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
|
31 |
-
|
32 |
-
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
st.write(f"Number of faces detected: {num_faces}")
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
draw = ImageDraw.Draw(image_with_box)
|
43 |
-
draw.rectangle([xmin, ymin, xmax, ymax], outline="red", width=3)
|
44 |
-
st.image(image_with_box, caption="Face Detection", use_column_width=True)
|
45 |
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
3 |
+
import face_recognition
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
import os
|
7 |
+
from datetime import datetime
|
8 |
|
9 |
+
st.title("AIMLJan24 - Face Recognition")
|
|
|
10 |
|
11 |
+
# Load images for face recognition
|
12 |
+
Images = []
|
13 |
+
classnames = []
|
14 |
+
directory = "photos"
|
15 |
+
myList = os.listdir(directory)
|
16 |
|
17 |
+
st.write("Photographs found in folder : ")
|
18 |
+
for cls in myList:
|
19 |
+
if os.path.splitext(cls)[1] in [".jpg", ".jpeg"]:
|
20 |
+
img_path = os.path.join(directory, cls)
|
21 |
+
curImg = cv2.imread(img_path)
|
22 |
+
Images.append(curImg)
|
23 |
+
st.write(os.path.splitext(cls)[0])
|
24 |
+
classnames.append(os.path.splitext(cls)[0])
|
25 |
|
26 |
+
# Load images for face recognition
|
27 |
+
encodeListknown = [face_recognition.face_encodings(img)[0] for img in Images]
|
28 |
|
29 |
+
# camera to take photo of user in question
|
30 |
+
file_name = st.file_uploader("Upload image")
|
|
|
31 |
|
32 |
+
def add_attendance(name):
|
33 |
+
username = name
|
34 |
+
current_datetime = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
35 |
+
print(current_datetime)
|
36 |
+
|
37 |
+
if not os.path.isdir('Attendance'):
|
38 |
+
os.makedirs('Attendance')
|
39 |
|
40 |
+
if f'Attendance-{current_datetime}.csv' not in os.listdir('Attendance'):
|
41 |
+
with open(f'Attendance/Attendance-{current_datetime}.csv', 'w') as f:
|
42 |
+
f.write('Name,Time')
|
43 |
+
|
44 |
|
45 |
+
if file_name is not None:
|
46 |
+
col1, col2 = st.columns(2)
|
47 |
|
48 |
+
test_image = Image.open(file_name)
|
49 |
+
image = np.asarray(test_image)
|
|
|
50 |
|
51 |
+
imgS = cv2.resize(image, (0, 0), None, 0.25, 0.25)
|
52 |
+
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
|
53 |
+
facesCurFrame = face_recognition.face_locations(imgS)
|
54 |
+
encodesCurFrame = face_recognition.face_encodings(imgS, facesCurFrame)
|
|
|
|
|
|
|
55 |
|
56 |
+
# List to store recognized names for all faces in the image
|
57 |
+
recognized_names = []
|
58 |
+
|
59 |
+
# Checking if faces are detected
|
60 |
+
if len(encodesCurFrame) > 0:
|
61 |
+
for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame):
|
62 |
+
# Assuming that encodeListknown is defined and populated in your code
|
63 |
+
matches = face_recognition.compare_faces(encodeListknown, encodeFace)
|
64 |
+
faceDis = face_recognition.face_distance(encodeListknown, encodeFace)
|
65 |
+
|
66 |
+
# Initialize name as Unknown
|
67 |
+
name = "Unknown"
|
68 |
+
|
69 |
+
# Check if there's a match with known faces
|
70 |
+
if True in matches:
|
71 |
+
matchIndex = np.argmin(faceDis)
|
72 |
+
name = classnames[matchIndex].upper()
|
73 |
+
|
74 |
+
# Append recognized name to the list
|
75 |
+
recognized_names.append(name)
|
76 |
+
|
77 |
+
# Draw rectangle and label on the image
|
78 |
+
y1, x2, y2, x1 = faceLoc
|
79 |
+
y1, x2, y2, x1 = (y1 * 4), (x2 * 4), (y2 * 4) ,(x1 * 4)
|
80 |
+
|
81 |
+
# Make a copy of the image array before drawing on it
|
82 |
+
image_copy = image.copy()
|
83 |
+
|
84 |
+
cv2.rectangle(image_copy, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
85 |
+
cv2.rectangle(image_copy, (x1, y2 - 35), (x2, y2), (0, 255, 0), cv2.FILLED)
|
86 |
+
cv2.putText(image_copy, name, (x1 + 6, y2 - 6), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2)
|
87 |
+
|
88 |
+
# Update the database
|
89 |
+
add_attendance(name)
|
90 |
+
|
91 |
+
# Display the image with recognized names
|
92 |
+
st.image(image_copy, use_column_width=True, output_format="PNG")
|
93 |
+
|
94 |
+
# Display recognized names
|
95 |
+
st.write("Recognized Names:")
|
96 |
+
for i, name in enumerate(recognized_names):
|
97 |
+
st.write(f"Face {i+1}: {name}")
|
98 |
+
else:
|
99 |
+
st.warning("No faces detected in the image. Face recognition failed.")
|