File size: 6,663 Bytes
d276e4f
 
 
 
88acb4b
d276e4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88acb4b
 
 
 
 
 
d276e4f
 
 
 
 
88acb4b
d276e4f
 
 
2f06262
d276e4f
 
 
 
 
88acb4b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import gradio as gr
import cv2
import mediapipe as mp
import numpy as np
from PIL import Image

# Initialize mediapipe pose class
mp_pose = mp.solutions.pose
pose = mp_pose.Pose(static_image_mode=False, min_detection_confidence=0.5, model_complexity=1)
mp_drawing = mp.solutions.drawing_utils

# Function to calculate the angle between three points
def calculate_angle(a, b, c):
    a = np.array([a.x, a.y])  # First point
    b = np.array([b.x, b.y])  # Mid point
    c = np.array([c.x, c.y])  # End point
    
    radians = np.arctan2(c[1] - b[1], c[0] - b[0]) - np.arctan2(a[1] - b[1], a[0] - b[0])
    angle = np.abs(radians * 180.0 / np.pi)
    
    if angle > 180.0:
        angle = 360 - angle
        
    return angle

# Define a function to classify yoga poses
def classify_pose(landmarks, output_image, display=False):
    label = 'Unknown Pose'
    color = (0, 0, 255)

    # Calculate the required angles
    left_elbow_angle = calculate_angle(
        landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value],
        landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value],
        landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value])

    right_elbow_angle = calculate_angle(
        landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value],
        landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value],
        landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value])

    left_shoulder_angle = calculate_angle(
        landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value],
        landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value],
        landmarks[mp_pose.PoseLandmark.LEFT_HIP.value])

    right_shoulder_angle = calculate_angle(
        landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value],
        landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value],
        landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value])

    left_knee_angle = calculate_angle(
        landmarks[mp_pose.PoseLandmark.LEFT_HIP.value],
        landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value],
        landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value])

    right_knee_angle = calculate_angle(
        landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value],
        landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value],
        landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value])

    # Check for Five-Pointed Star Pose
    if abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y - landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].y) < 0.1 and \
       abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].y - landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value].y) < 0.1 and \
       abs(landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].x - landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value].x) > 0.2 and \
       abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].x) > 0.2:
        label = "Five-Pointed Star Pose"
    
    # Check for Warrior II pose
    if 165 < left_elbow_angle < 195 and 165 < right_elbow_angle < 195 and \
       80 < left_shoulder_angle < 110 and 80 < right_shoulder_angle < 110:
        if (165 < left_knee_angle < 195 or 165 < right_knee_angle < 195) and \
           (90 < left_knee_angle < 120 or 90 < right_knee_angle < 120):
            label = 'Warrior II Pose'

    # Check for T pose
    if 165 < left_elbow_angle < 195 and 165 < right_elbow_angle < 195 and \
       80 < left_shoulder_angle < 110 and 80 < right_shoulder_angle < 110 and \
       160 < left_knee_angle < 195 and 160 < right_knee_angle < 195:
        label = 'T Pose'

    # Check for Tree Pose
    if (165 < left_knee_angle < 195 or 165 < right_knee_angle < 195) and \
       (315 < left_knee_angle < 335 or 25 < right_knee_angle < 45):
        label = 'Tree Pose'
    
    # Check for Upward Salute Pose
    if abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].x) < 0.1 and \
       abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value].x) < 0.1 and \
       landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y < landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y and \
       landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].y < landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].y and \
       abs(landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y - landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].y) < 0.05:
        label = "Upward Salute Pose"

    # Check for Hands Under Feet Pose
    if landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y > landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].y and \
       landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].y > landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value].y and \
       abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].x) < 0.05 and \
       abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value].x) < 0.05:
        label = "Hands Under Feet Pose"

    # Check for Plank Pose
    # The body should be in a straight line from head to heels, 
    # so the shoulder and hip angles should be close to 180 degrees
    if left_shoulder_angle > 160 and left_shoulder_angle < 200 and \
       right_shoulder_angle > 160 and right_shoulder_angle < 200 and \
       left_knee_angle > 160 and left_knee_angle < 200 and \
       right_knee_angle > 160 and right_knee_angle < 200:
        label = "Plank Pose"
    
    # Update the color to green if pose is classified
    if label != 'Unknown Pose':
        color = (0, 255, 0)
    
    # Write the label on the output image
    cv2.putText(output_image, label, (10, 30), cv2.FONT_HERSHEY_PLAIN, 2, color, 2)

    return output_image, label

def detect_and_classify_pose(input_image):
    # Convert input to numpy array if it's not
    if isinstance(input_image, Image.Image):
        input_image = np.array(input_image)
    
    # Convert the image from RGB to BGR (OpenCV format)
    input_image = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR)
    results = pose.process(input_image)
    pose_classification = "No pose detected"
    if results.pose_landmarks:
        mp_drawing.draw_landmarks(input_image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS)
        input_image, pose_classification = classify_pose(results.pose_landmarks.landmark, input_image)
    return cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB), pose_classification

iface = gr.Interface(
    fn=detect_and_classify_pose,
    inputs=gr.Video(),
    outputs=["image", "text"],
    title="Live Yoga Pose Detection and Classification",
    description="This app detects and classifies yoga poses from the live camera feed using MediaPipe.",
)

iface.launch(share=True)