Spaces:
Sleeping
Sleeping
File size: 6,663 Bytes
d276e4f 88acb4b d276e4f 88acb4b d276e4f 88acb4b d276e4f 2f06262 d276e4f 88acb4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import gradio as gr
import cv2
import mediapipe as mp
import numpy as np
from PIL import Image
# Initialize mediapipe pose class
mp_pose = mp.solutions.pose
pose = mp_pose.Pose(static_image_mode=False, min_detection_confidence=0.5, model_complexity=1)
mp_drawing = mp.solutions.drawing_utils
# Function to calculate the angle between three points
def calculate_angle(a, b, c):
a = np.array([a.x, a.y]) # First point
b = np.array([b.x, b.y]) # Mid point
c = np.array([c.x, c.y]) # End point
radians = np.arctan2(c[1] - b[1], c[0] - b[0]) - np.arctan2(a[1] - b[1], a[0] - b[0])
angle = np.abs(radians * 180.0 / np.pi)
if angle > 180.0:
angle = 360 - angle
return angle
# Define a function to classify yoga poses
def classify_pose(landmarks, output_image, display=False):
label = 'Unknown Pose'
color = (0, 0, 255)
# Calculate the required angles
left_elbow_angle = calculate_angle(
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value],
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value])
right_elbow_angle = calculate_angle(
landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value],
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value])
left_shoulder_angle = calculate_angle(
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value],
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.LEFT_HIP.value])
right_shoulder_angle = calculate_angle(
landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value],
landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value])
left_knee_angle = calculate_angle(
landmarks[mp_pose.PoseLandmark.LEFT_HIP.value],
landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value],
landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value])
right_knee_angle = calculate_angle(
landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value],
landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value],
landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value])
# Check for Five-Pointed Star Pose
if abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y - landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].y) < 0.1 and \
abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].y - landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value].y) < 0.1 and \
abs(landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].x - landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value].x) > 0.2 and \
abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].x) > 0.2:
label = "Five-Pointed Star Pose"
# Check for Warrior II pose
if 165 < left_elbow_angle < 195 and 165 < right_elbow_angle < 195 and \
80 < left_shoulder_angle < 110 and 80 < right_shoulder_angle < 110:
if (165 < left_knee_angle < 195 or 165 < right_knee_angle < 195) and \
(90 < left_knee_angle < 120 or 90 < right_knee_angle < 120):
label = 'Warrior II Pose'
# Check for T pose
if 165 < left_elbow_angle < 195 and 165 < right_elbow_angle < 195 and \
80 < left_shoulder_angle < 110 and 80 < right_shoulder_angle < 110 and \
160 < left_knee_angle < 195 and 160 < right_knee_angle < 195:
label = 'T Pose'
# Check for Tree Pose
if (165 < left_knee_angle < 195 or 165 < right_knee_angle < 195) and \
(315 < left_knee_angle < 335 or 25 < right_knee_angle < 45):
label = 'Tree Pose'
# Check for Upward Salute Pose
if abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].x) < 0.1 and \
abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value].x) < 0.1 and \
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y < landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y and \
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].y < landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].y and \
abs(landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y - landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].y) < 0.05:
label = "Upward Salute Pose"
# Check for Hands Under Feet Pose
if landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y > landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].y and \
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].y > landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value].y and \
abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].x) < 0.05 and \
abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value].x) < 0.05:
label = "Hands Under Feet Pose"
# Check for Plank Pose
# The body should be in a straight line from head to heels,
# so the shoulder and hip angles should be close to 180 degrees
if left_shoulder_angle > 160 and left_shoulder_angle < 200 and \
right_shoulder_angle > 160 and right_shoulder_angle < 200 and \
left_knee_angle > 160 and left_knee_angle < 200 and \
right_knee_angle > 160 and right_knee_angle < 200:
label = "Plank Pose"
# Update the color to green if pose is classified
if label != 'Unknown Pose':
color = (0, 255, 0)
# Write the label on the output image
cv2.putText(output_image, label, (10, 30), cv2.FONT_HERSHEY_PLAIN, 2, color, 2)
return output_image, label
def detect_and_classify_pose(input_image):
# Convert input to numpy array if it's not
if isinstance(input_image, Image.Image):
input_image = np.array(input_image)
# Convert the image from RGB to BGR (OpenCV format)
input_image = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR)
results = pose.process(input_image)
pose_classification = "No pose detected"
if results.pose_landmarks:
mp_drawing.draw_landmarks(input_image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS)
input_image, pose_classification = classify_pose(results.pose_landmarks.landmark, input_image)
return cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB), pose_classification
iface = gr.Interface(
fn=detect_and_classify_pose,
inputs=gr.Video(),
outputs=["image", "text"],
title="Live Yoga Pose Detection and Classification",
description="This app detects and classifies yoga poses from the live camera feed using MediaPipe.",
)
iface.launch(share=True)
|