nikshep01's picture
Update app.py
d276e4f verified
raw
history blame
6.47 kB
import gradio as gr
import cv2
import mediapipe as mp
import numpy as np
# Initialize mediapipe pose class
mp_pose = mp.solutions.pose
pose = mp_pose.Pose(static_image_mode=False, min_detection_confidence=0.5, model_complexity=1)
mp_drawing = mp.solutions.drawing_utils
# Function to calculate the angle between three points
def calculate_angle(a, b, c):
a = np.array([a.x, a.y]) # First point
b = np.array([b.x, b.y]) # Mid point
c = np.array([c.x, c.y]) # End point
radians = np.arctan2(c[1] - b[1], c[0] - b[0]) - np.arctan2(a[1] - b[1], a[0] - b[0])
angle = np.abs(radians * 180.0 / np.pi)
if angle > 180.0:
angle = 360 - angle
return angle
# Define a function to classify yoga poses
def classify_pose(landmarks, output_image, display=False):
label = 'Unknown Pose'
color = (0, 0, 255)
# Calculate the required angles
left_elbow_angle = calculate_angle(
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value],
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value])
right_elbow_angle = calculate_angle(
landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value],
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value])
left_shoulder_angle = calculate_angle(
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value],
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.LEFT_HIP.value])
right_shoulder_angle = calculate_angle(
landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value],
landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value])
left_knee_angle = calculate_angle(
landmarks[mp_pose.PoseLandmark.LEFT_HIP.value],
landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value],
landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value])
right_knee_angle = calculate_angle(
landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value],
landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value],
landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value])
# Check for Five-Pointed Star Pose
if abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y - landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].y) < 0.1 and \
abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].y - landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value].y) < 0.1 and \
abs(landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].x - landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value].x) > 0.2 and \
abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].x) > 0.2:
label = "Five-Pointed Star Pose"
# Check for Warrior II pose
if 165 < left_elbow_angle < 195 and 165 < right_elbow_angle < 195 and \
80 < left_shoulder_angle < 110 and 80 < right_shoulder_angle < 110:
if (165 < left_knee_angle < 195 or 165 < right_knee_angle < 195) and \
(90 < left_knee_angle < 120 or 90 < right_knee_angle < 120):
label = 'Warrior II Pose'
# Check for T pose
if 165 < left_elbow_angle < 195 and 165 < right_elbow_angle < 195 and \
80 < left_shoulder_angle < 110 and 80 < right_shoulder_angle < 110 and \
160 < left_knee_angle < 195 and 160 < right_knee_angle < 195:
label = 'T Pose'
# Check for Tree Pose
if (165 < left_knee_angle < 195 or 165 < right_knee_angle < 195) and \
(315 < left_knee_angle < 335 or 25 < right_knee_angle < 45):
label = 'Tree Pose'
# Check for Upward Salute Pose
if abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].x) < 0.1 and \
abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value].x) < 0.1 and \
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y < landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y and \
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].y < landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].y and \
abs(landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y - landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].y) < 0.05:
label = "Upward Salute Pose"
# Check for Hands Under Feet Pose
if landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y > landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].y and \
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].y > landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value].y and \
abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].x) < 0.05 and \
abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value].x) < 0.05:
label = "Hands Under Feet Pose"
# Check for Plank Pose
# The body should be in a straight line from head to heels,
# so the shoulder and hip angles should be close to 180 degrees
if left_shoulder_angle > 160 and left_shoulder_angle < 200 and \
right_shoulder_angle > 160 and right_shoulder_angle < 200 and \
left_knee_angle > 160 and left_knee_angle < 200 and \
right_knee_angle > 160 and right_knee_angle < 200:
label = "Plank Pose"
# Update the color to green if pose is classified
if label != 'Unknown Pose':
color = (0, 255, 0)
# Write the label on the output image
cv2.putText(output_image, label, (10, 30), cv2.FONT_HERSHEY_PLAIN, 2, color, 2)
return output_image, label
def detect_and_classify_pose(input_image):
input_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB)
results = pose.process(input_image)
pose_classification = "No pose detected"
if results.pose_landmarks:
mp_drawing.draw_landmarks(input_image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS)
input_image, pose_classification = classify_pose(results.pose_landmarks.landmark, input_image)
return cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR), pose_classification
iface = gr.Interface(
fn=detect_and_classify_pose,
inputs=gr.inputs.Video(source="webcam", streaming=True),
outputs=["image", "text"],
title="Live Yoga Pose Detection and Classification",
description="This app detects and classifies yoga poses from the live camera feed using MediaPipe.",
)
iface.launch()