File size: 7,406 Bytes
39485d9
c92f9e6
 
 
 
 
39485d9
c92f9e6
 
39485d9
92cbbe3
c92f9e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92cbbe3
c92f9e6
 
 
92cbbe3
c92f9e6
 
39485d9
c92f9e6
39485d9
92cbbe3
c92f9e6
 
 
 
 
 
 
39485d9
c92f9e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39485d9
92cbbe3
39485d9
c92f9e6
 
39485d9
c92f9e6
 
 
 
 
 
 
 
39485d9
92cbbe3
 
c92f9e6
92cbbe3
39485d9
 
92cbbe3
c92f9e6
92cbbe3
c92f9e6
39485d9
 
 
92cbbe3
c92f9e6
 
92cbbe3
c92f9e6
 
39485d9
92cbbe3
c92f9e6
 
92cbbe3
39485d9
c92f9e6
92cbbe3
39485d9
 
 
92cbbe3
c92f9e6
 
 
 
 
 
 
 
 
 
 
39485d9
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os
import logging
import requests
import json
from typing import Dict, Any, List
from dataclasses import dataclass
from dotenv import load_dotenv
import streamlit as st
import pandas as pd
from transformers import AutoTokenizer, AutoModelForCausalLM

@dataclass
class GraphQLSchemaType:
    """Store GraphQL type information including fields and relationships"""
    name: str
    fields: List[Dict[str, Any]]
    relationships: List[Dict[str, str]]

class ShopifyGraphQLConverter:
    def __init__(self, shop_url: str, access_token: str, api_key: str, model_name: str):
        """
        Initialize Shopify GraphQL converter
        
        :param shop_url: Shopify store URL
        :param access_token: Shopify Admin API access token
        :param api_key: LLM service API key
        :param model_name: Model name for Hugging Face
        """
        load_dotenv()

        # Ensure shop URL has https:// scheme
        if not shop_url.startswith(('http://', 'https://')):
            shop_url = f'https://{shop_url}'
        
        # Shopify GraphQL endpoint configuration
        self.shop_url = shop_url
        self.graphql_endpoint = f"{shop_url}/admin/api/2024-04/graphql.json"
        self.access_token = access_token
        
        # LLM API configuration
        self.api_key = api_key
        self.llm_api_url = "https://api.groq.com/openai/v1/chat/completions"
        self.llm_headers = {
            "Authorization": f"Bearer {api_key}",
            "Content-Type": "application/json"
        }

        # Load model directly for natural language processing
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = AutoModelForCausalLM.from_pretrained(model_name)

        # Predefined schema for Shopify resources
        self.schema = {
            "Product": GraphQLSchemaType(
                name="Product",
                fields=[
                    {"name": "id", "type": "ID", "required": False},
                    {"name": "title", "type": "String", "required": False},
                    {"name": "description", "type": "String", "required": False},
                    {"name": "productType", "type": "String", "required": False},
                    {"name": "vendor", "type": "String", "required": False},
                    {"name": "priceRangeV2", "type": "ProductPriceRangeV2", "required": False}
                ],
                relationships=[
                    {"from_field": "variants", "to_type": "ProductVariant"},
                    {"from_field": "collections", "to_type": "Collection"}
                ]
            ),
        }

        # Setup logging
        logging.basicConfig(level=logging.INFO)
        self.logger = logging.getLogger(__name__)

    def generate_graphql_query(self, natural_query: str) -> str:
        """
        Generate GraphQL query from natural language using Llama model
        
        :param natural_query: The query in natural language
        :return: GraphQL query as a string
        """
        inputs = self.tokenizer(natural_query, return_tensors="pt")
        outputs = self.model.generate(**inputs, max_length=500)
        query = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
        
        return query

    def convert_to_graphql_query(self, natural_query: str) -> Dict[str, Any]:
        """
        Convert natural language to Shopify GraphQL query
        
        :param natural_query: Natural language query string
        :return: Dictionary containing GraphQL query or error
        """
        try:
            query = self.generate_graphql_query(natural_query)

            # Basic query validation
            if query.startswith("query") and "products" in query:
                return {"success": True, "query": query}

            return {"success": False, "error": "Failed to generate valid GraphQL query"}
            
        except Exception as e:
            self.logger.error(f"Query generation error: {str(e)}")
            return {"success": False, "error": str(e)}

    def execute_query(self, graphql_query: str) -> Dict[str, Any]:
        """
        Execute the GraphQL query against Shopify Admin API
        
        :param graphql_query: GraphQL query to execute
        :return: Dictionary containing query results or error
        """
        try:
            payload = {"query": graphql_query}
            response = requests.post(
                self.graphql_endpoint,
                headers={
                    "Content-Type": "application/json",
                    "X-Shopify-Access-Token": self.access_token
                },
                json=payload
            )
            response.raise_for_status()
            
            result = response.json()
            return {"success": True, "data": result.get('data', {}), "errors": result.get('errors', [])}
                
        except requests.exceptions.RequestException as e:
            self.logger.error(f"Shopify GraphQL query execution error: {str(e)}")
            return {"success": False, "error": str(e)}

def main():
    st.title("Shopify GraphQL Natural Language Query Converter")

    load_dotenv()

    shop_url = os.getenv("SHOPIFY_STORE_URL", "https://agkd0n-fa.myshopify.com")
    access_token = os.getenv("SHOPIFY_ACCESS_TOKEN")
    groq_api_key = os.getenv("GROQ_API_KEY")
    model_name = "Qwen/Qwen2.5-72B-Instruct"  # Modify this for Llama3 if needed

    if not all([shop_url, access_token, groq_api_key]):
        st.error("Missing environment variables. Please set SHOPIFY_STORE_URL, SHOPIFY_ACCESS_TOKEN, and GROQ_API_KEY")
        return
    
    try:
        graphql_converter = ShopifyGraphQLConverter(shop_url, access_token, groq_api_key, model_name)
    except Exception as e:
        st.error(f"Error initializing service: {str(e)}")
        return

    natural_query = st.text_area("Enter your Shopify query in natural language", "Find shirt with red color", height=100)

    if st.button("Generate and Execute GraphQL Query"):
        if not natural_query.strip():
            st.warning("Please enter a valid query.")
            return

        with st.spinner("Generating GraphQL query..."):
            graphql_result = graphql_converter.convert_to_graphql_query(natural_query)

        if not graphql_result["success"]:
            st.error(f"Error generating GraphQL query: {graphql_result['error']}")
            return

        st.subheader("Generated GraphQL Query:")
        st.code(graphql_result["query"], language="graphql")

        with st.spinner("Executing query..."):
            query_result = graphql_converter.execute_query(graphql_result["query"])

        if not query_result["success"]:
            st.error(f"Error executing query: {query_result['error']}")
            return

        st.subheader("Query Results:")
        if query_result["errors"]:
            st.error(f"GraphQL Errors: {query_result['errors']}")

        if query_result["data"]:
            products = query_result["data"].get("products", {}).get("edges", [])
            if products:
                product_list = [{"Title": p["node"]["title"], "Vendor": p["node"]["vendor"]} for p in products]
                st.dataframe(pd.DataFrame(product_list))
            else:
                st.info("No products found.")
        else:
            st.info("No results found.")

if __name__ == "__main__":
    main()