aimusicdetection / dataset_f.py
nininigold's picture
Upload folder using huggingface_hub
3cecacc verified
import os
import glob
import torch
import torchaudio
import librosa
import numpy as np
from torch.utils.data import Dataset
import torch
import torchaudio
from transformers import Wav2Vec2FeatureExtractor
import scipy.signal as signal
import scipy.signal
import random
class FakeMusicCapsDataset(Dataset):
def __init__(self, file_paths, labels, sr=16000, target_duration=10.0):
self.file_paths = file_paths
self.labels = labels
self.sr = sr
self.target_samples = int(target_duration * sr) # Fixed length: 10 seconds
self.processor = Wav2Vec2FeatureExtractor.from_pretrained("m-a-p/MERT-v1-95M", trust_remote_code=True)
def __len__(self):
return len(self.file_paths)
def pre_emphasis(self, x, alpha=0.97):
return np.append(x[0], x[1:] - alpha * x[:-1])
def highpass_filter(self, y, sr, cutoff=1000, order=5):
if isinstance(sr, np.ndarray):
sr = np.mean(sr)
if not isinstance(sr, (int, float)):
raise ValueError(f"[ERROR] sr must be a number, but got {type(sr)}: {sr}")
if sr <= 0:
raise ValueError(f"Invalid sample rate: {sr}. It must be greater than 0.")
nyquist = 0.5 * sr
if cutoff <= 0 or cutoff >= nyquist:
print(f"[WARNING] Invalid cutoff frequency {cutoff}, adjusting...")
cutoff = max(10, min(cutoff, nyquist - 1))
normal_cutoff = cutoff / nyquist
b, a = signal.butter(order, normal_cutoff, btype='high', analog=False)
y_filtered = signal.lfilter(b, a, y)
return y_filtered
# ์‹œ๊ฐ„ ์กฐ์ ˆ(Time Stretch), ์ดํ€„๋ผ์ด์ € ์กฐ์ •(EQ), ๋ฆฌ๋ฒ„๋ธŒ ์ถ”๊ฐ€
def augment_audio(self, y, sr):
if isinstance(y, torch.Tensor):
y = y.numpy() # Tensor โ†’ Numpy ๋ณ€ํ™˜
if random.random() < 0.5: # ์‹œ๊ฐ„ ์กฐ์ ˆ (Time Stretch)
rate = random.uniform(0.8, 1.2)
y = librosa.effects.time_stretch(y=y, rate=rate)
if random.random() < 0.5: # ํ”ผ์น˜ ์‹œํ”„ํŠธ (Pitch Shift)
n_steps = random.randint(-2, 2)
y = librosa.effects.pitch_shift(y=y, sr=sr, n_steps=n_steps)
if random.random() < 0.5: # ํ™”์ดํŠธ ๋…ธ์ด์ฆˆ ์ถ”๊ฐ€ (White Noise Addition)
noise_level = np.random.uniform(0.001, 0.005)
y = y + np.random.normal(0, noise_level, y.shape)
return torch.tensor(y, dtype=torch.float32) # ๋‹ค์‹œ Tensor๋กœ ๋ณ€ํ™˜
def __getitem__(self, idx):
audio_path = self.file_paths[idx]
label = self.labels[idx]
waveform, sr = torchaudio.load(audio_path)
target_sr = self.processor.sampling_rate
if sr != target_sr:
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=target_sr)
waveform = resampler(waveform)
waveform = waveform.mean(dim=0).squeeze(0)
if label == 0:
waveform = self.augment_audio(waveform, self.sr)
if label == 1:
waveform = self.highpass_filter(waveform, self.sr)
# waveform = self.pre_emphasis(waveform)
waveform = self.augment_audio(waveform, self.sr)
# if label == 1:
# waveform = self.pre_emphasis(waveform)
# waveform = torch.tensor(waveform, dtype=torch.float32)
current_samples = waveform.shape[0]
if current_samples > self.target_samples:
waveform = waveform[:self.target_samples] # Truncate
elif current_samples < self.target_samples:
pad_length = self.target_samples - current_samples
waveform = torch.nn.functional.pad(waveform, (0, pad_length)) # Pad
if isinstance(waveform, torch.Tensor):
waveform = waveform.numpy() # Tensor์ผ ๊ฒฝ์šฐ์—๋งŒ ๋ณ€ํ™˜
print(waveform.shape)
inputs = self.processor(waveform, sampling_rate=target_sr, return_tensors="pt", padding=True)
print(inputs["input_values"].shape)
return inputs["input_values"].squeeze(0), torch.tensor(label, dtype=torch.long) # [1, time] โ†’ [time]
@staticmethod
def collate_fn(batch, target_samples=16000 * 10):
inputs, labels = zip(*batch) # Unzip batch
processed_inputs = []
for waveform in inputs:
current_samples = waveform.shape[0]
if current_samples > target_samples:
start_idx = (current_samples - target_samples) // 2
cropped_waveform = waveform[start_idx:start_idx + target_samples]
else:
pad_length = target_samples - current_samples
cropped_waveform = torch.nn.functional.pad(waveform, (0, pad_length))
processed_inputs.append(cropped_waveform)
processed_inputs = torch.stack(processed_inputs) # [batch, target_samples]
labels = torch.tensor(labels, dtype=torch.long) # [batch]
return processed_inputs, labels
def preprocess_audio(audio_path, target_sr=16000, max_length=160000):
"""
์˜ค๋””์˜ค๋ฅผ ๋ชจ๋ธ ์ž…๋ ฅ์— ๋งž๊ฒŒ ๋ณ€ํ™˜
- target_sr: 16kHz๋กœ ๋ณ€ํ™˜
- max_length: ์ตœ๋Œ€ ๊ธธ์ด 160000 (10์ดˆ)
"""
waveform, sr = torchaudio.load(audio_path)
# Resample if needed
if sr != target_sr:
waveform = torchaudio.transforms.Resample(orig_freq=sr, new_freq=target_sr)(waveform)
# Convert to mono
waveform = waveform.mean(dim=0).unsqueeze(0) # (1, sequence_length)
current_samples = waveform.shape[1]
if current_samples > max_length:
start_idx = (current_samples - max_length) // 2
waveform = waveform[:, start_idx:start_idx + max_length]
elif current_samples < max_length:
pad_length = max_length - current_samples
waveform = torch.nn.functional.pad(waveform, (0, pad_length))
return waveform
def collect_files(base_path):
real_files = glob.glob(os.path.join(base_path, "real", "**", "*.wav"), recursive=True)
gen_files = glob.glob(os.path.join(base_path, "generative", "**", "*.wav"), recursive=True)
real_labels = [0] * len(real_files)
gen_labels = [1] * len(gen_files)
return real_files + gen_files, real_labels + gen_labels