aimusicdetection / preprocess.py
nininigold's picture
Upload folder using huggingface_hub
d4ac163 verified
from beat_this.inference import File2Beats
import torchaudio
import torch
from pathlib import Path
import numpy as np
from collections import Counter
import os
import argparse
from tqdm import tqdm
import concurrent.futures
def get_segments_from_wav(wav_path, device="cuda"):
"""์˜ค๋””์˜ค ํŒŒ์ผ์—์„œ ๋น„ํŠธ์™€ ๋‹ค์šด๋น„ํŠธ๋ฅผ ์ถ”์ถœํ•ฉ๋‹ˆ๋‹ค."""
#try:
file2beats = File2Beats(checkpoint_path="final0", device="cuda", dbn=False)
all_models = ["final0", "final1", "final2", "small0", "small1", "small2","single_final0", "single_final1", "single_final2"]
beats, downbeats = file2beats(wav_path)
if len(downbeats)==0: # downbeats๋ฅผ ๊ทธ๋ƒฅ 0 2 4..๋กœ ๋„ฃ์–ด์ฃผ์ž. ์Œ์•… ๊ธธ์ด์— ๋งž๊ฒŒ
waveform, sample_rate = torchaudio.load(wav_path)
duration = waveform.size(1) / sample_rate
downbeats = np.arange(0, duration, 2)
return beats, downbeats
#except Exception as e:
# print(f"Error extracting beats from {wav_path}: {str(e)}")
# return None, None
def find_optimal_segment_length(downbeats, round_decimal=1, bar_length = 4):
"""๋‹ค์šด๋น„ํŠธ ๊ฐ„๊ฒฉ๋“ค์˜ ๋ถ„ํฌ๋ฅผ ๋ถ„์„ํ•˜์—ฌ ์ตœ์ ์˜ 4๋งˆ๋”” ๊ธธ์ด์™€ ์ •์ œ๋œ ๋‹ค์šด๋น„ํŠธ ์œ„์น˜๋“ค์„ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค."""
if len(downbeats) < 2:
return 10.0, downbeats # ๊ธฐ๋ณธ 10์ดˆ ๊ธธ์ด ๋ฐ˜ํ™˜
# ์—ฐ์†๋œ downbeat ๊ฐ„์˜ ๊ฐ„๊ฒฉ ๊ณ„์‚ฐ
intervals = np.diff(downbeats)
rounded_intervals = np.round(intervals, round_decimal)
# ๊ฐ€์žฅ ํ”ํ•œ ๊ฐ„๊ฒฉ ์ฐพ๊ธฐ (1๋งˆ๋”” ๊ธธ์ด)
interval_counter = Counter(rounded_intervals)
most_common_interval = interval_counter.most_common(1)[0][0]
# ์ •์ œ๋œ downbeat ์œ„์น˜ ์ฐพ๊ธฐ
cleaned_downbeats = [downbeats[0]] # ์ฒซ ๋ฒˆ์งธ ์œ„์น˜๋Š” ํ•ญ์ƒ ํฌํ•จ
for i in range(1, len(downbeats)):
interval = rounded_intervals[i-1]
# ํ˜„์žฌ ๊ฐ„๊ฒฉ์ด ๊ฐ€์žฅ ํ”ํ•œ ๊ฐ„๊ฒฉ๊ณผ ๋น„์Šทํ•œ์ง€ ํ™•์ธ (10% ์˜ค์ฐจ ํ—ˆ์šฉ)
if abs(interval - most_common_interval) <= most_common_interval * 0.1:
cleaned_downbeats.append(downbeats[i])
return float(most_common_interval * bar_length), np.array(cleaned_downbeats)
def process_audio_file(audio_file, output_dir, temp_dir, device="cuda"):
"""๋‹จ์ผ ์˜ค๋””์˜ค ํŒŒ์ผ์„ ์ฒ˜๋ฆฌํ•˜๊ณ  ์„ธ๊ทธ๋จผํŠธ๋ฅผ ์ถ”์ถœํ•ฉ๋‹ˆ๋‹ค."""
try:
output_dir = Path(output_dir) # output_dir์„ Path ๊ฐ์ฒด๋กœ ๋ณ€ํ™˜
beats, downbeats = get_segments_from_wav(str(audio_file), device=device)
for bar_length in [1,2,3]:
# ๋ฌธ์ž์—ด๋กœ ๋ณ€ํ™˜ ํ›„ "segments_wav"๋ฅผ "segments_wav_์ˆซ์ž"๋กœ ๋Œ€์ฒด
dir_str = str(output_dir)
if "segments_wav" in dir_str:
new_dir_str = dir_str.replace("segments_wav", f"segments_wav_{bar_length}")
base_dir = Path(new_dir_str)
else:
# segments_wav๊ฐ€ ์—†๋Š” ๊ฒฝ์šฐ ์ฒ˜๋ฆฌ
base_dir = output_dir.parent / f"{output_dir.name}_{bar_length}"
file_seg_dir = base_dir / audio_file.stem
file_seg_dir.mkdir(exist_ok=True, parents=True)
# ๋น„ํŠธ ์ •๋ณด ์ถ”์ถœ
if beats is None or downbeats is None or len(downbeats) == 0:
print(f"No beat information extracted for {audio_file.name}, skipping...")
return 0
# ์ตœ์ ์˜ ์„ธ๊ทธ๋จผํŠธ ๊ธธ์ด์™€ ์ •์ œ๋œ ๋‹ค์šด๋น„ํŠธ ์ฐพ๊ธฐ
optimal_length, cleaned_downbeats = find_optimal_segment_length(downbeats, bar_length=bar_length)
# ์˜ค๋””์˜ค ๋กœ๋“œ
waveform, sample_rate = torchaudio.load(str(audio_file))
if waveform.size(0) > 1:
waveform = torch.mean(waveform, dim=0, keepdim=True)
total_duration = waveform.size(1) / sample_rate
segments_count = 0
# ๊ฐ ๋‹ค์šด๋น„ํŠธ์—์„œ ์‹œ์ž‘ํ•˜๋Š” ์„ธ๊ทธ๋จผํŠธ ์ƒ์„ฑ
for i, start_time in enumerate(cleaned_downbeats):
end_time = start_time + optimal_length
# ๋งˆ์ง€๋ง‰ ์„ธ๊ทธ๋จผํŠธ๊ฐ€ ํŒŒ์ผ ๊ธธ์ด๋ฅผ ์ดˆ๊ณผํ•˜๋ฉด ๊ฑด๋„ˆ๋›ฐ๊ธฐ
if end_time > total_duration:
continue
start_sample = int(start_time * sample_rate)
end_sample = int(end_time * sample_rate)
# ์„ธ๊ทธ๋จผํŠธ ์ถ”์ถœ ๋ฐ ์ €์žฅ
segment = waveform[:, start_sample:end_sample]
save_path = file_seg_dir / f"segment_{i}.wav"
torchaudio.save(str(save_path), segment, sample_rate)
segments_count += 1
# ์ž„์‹œ ๋น„ํŠธ ์ •๋ณด ์ €์žฅ (ํ•„์š”์‹œ)
if temp_dir:
segments_data = {'beat': beats, 'downbeat': downbeats}
temp_path = temp_dir / f"{audio_file.stem}_segments.npy"
np.save(str(temp_path), segments_data)
return segments_count
except Exception as e:
print(f"Error processing {audio_file.name}: {str(e)}")
return 0
def segment_dataset(base_dir, output_base_dir, temp_dir=None, num_workers=4, device="cuda"):
"""ISMIR2025 ๋ฐ์ดํ„ฐ์…‹์˜ full_length ํด๋”์—์„œ ์„ธ๊ทธ๋จผํŠธ๋ฅผ ์ถ”์ถœํ•ฉ๋‹ˆ๋‹ค."""
base_path = Path(base_dir)
output_base_path = Path(output_base_dir)
# ์ฒ˜๋ฆฌ ํ†ต๊ณ„
stats = {
"processed_files": 0,
"extracted_segments": 0,
"failed_files": 0
}
# ์ž„์‹œ ๋””๋ ‰ํ† ๋ฆฌ ์ƒ์„ฑ (๋น„ํŠธ ์ •๋ณด ์ €์žฅ์šฉ)
if temp_dir:
temp_dir = Path(temp_dir)
temp_dir.mkdir(exist_ok=True)
# Real๊ณผ Fake ์˜ค๋””์˜ค ๋ชจ๋‘ ์ฒ˜๋ฆฌ
for label in ["real", "fake"]:
for split in ["train", "valid", "test"]:
input_dir = base_path / label / split
output_dir = output_base_path / label / split
if not input_dir.exists():
print(f"Directory not found: {input_dir}")
continue
print(f"Processing {label}/{split} files...")
audio_files = list(input_dir.glob("*.wav")) + list(input_dir.glob("*.mp3"))
if not audio_files:
print(f"No audio files found in {input_dir}")
continue
# ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ ์„ค์ •
if num_workers > 1:
with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor:
future_to_file = {
executor.submit(process_audio_file, file, output_dir, temp_dir, device): file
for file in audio_files
}
for future in tqdm(concurrent.futures.as_completed(future_to_file), total=len(audio_files)):
file = future_to_file[future]
try:
segments_count = future.result()
if segments_count > 0:
stats["processed_files"] += 1
stats["extracted_segments"] += segments_count
else:
stats["failed_files"] += 1
except Exception as e:
print(f"Error processing {file.name}: {str(e)}")
stats["failed_files"] += 1
else:
# ์ง๋ ฌ ์ฒ˜๋ฆฌ
for file in tqdm(audio_files):
segments_count = process_audio_file(file, output_dir, temp_dir, device)
if segments_count > 0:
stats["processed_files"] += 1
stats["extracted_segments"] += segments_count
else:
stats["failed_files"] += 1
# ์ตœ์ข… ํ†ต๊ณ„ ๋ณด๊ณ 
print("\n=== Segmentation Summary ===")
print(f"Successfully processed files: {stats['processed_files']}")
print(f"Failed files: {stats['failed_files']}")
print(f"Total extracted segments: {stats['extracted_segments']}")
print(f"Average segments per file: {stats['extracted_segments'] / max(1, stats['processed_files']):.2f}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Extract segments from audio files in ISMIR2025 dataset")
parser.add_argument("--input", type=str, default="/data/datasets/ISMIR2025/full_length_audio",
help="Input directory with full_length audio files")
parser.add_argument("--output", type=str, default="/data/datasets/ISMIR2025/segments_wav",
help="Output directory for segments")
parser.add_argument("--temp", type=str, default=None,
help="Temporary directory for beat information (optional)")
parser.add_argument("--workers", type=int, default=4,
help="Number of parallel workers")
parser.add_argument("--device", type=str, default="cuda",
help="Device for beat extraction (cuda or cpu)")
args = parser.parse_args()
# ๋””๋ ‰ํ† ๋ฆฌ ์œ ํšจ์„ฑ ๊ฒ€์‚ฌ
input_path = Path(args.input)
if not input_path.exists():
print(f"Input directory not found: {args.input}")
# ๋‹ค๋ฅธ ๊ฐ€๋Šฅํ•œ ์œ„์น˜ ํ™•์ธ
alternatives = [
"/data/datasets/ISMIR2025/full_length",
"/data/ISMIR2025/full_length_audio",
"/data/ISMIR2025/full_length"
]
for alt_path in alternatives:
if os.path.exists(alt_path):
print(f"Found alternative input path: {alt_path}")
args.input = alt_path
break
else:
print("No valid input directory found.")
exit(1)
# ์„ธ๊ทธ๋จผํŠธ ์ถ”์ถœ ์‹คํ–‰
segment_dataset(
base_dir=args.input,
output_base_dir=args.output,
temp_dir=args.temp,
num_workers=args.workers,
device=args.device
)