Spaces:
Build error
Build error
import streamlit as st | |
import pandas as pd | |
from sklearn.ensemble import RandomForestClassifier | |
import joblib | |
def load_model(): | |
# Load the pre-trained model | |
model = joblib.load('weather_model.joblib') | |
return model | |
def predict_weather_conditions(model, input_data): | |
# Make predictions on the input data | |
predictions = model.predict(input_data) | |
return predictions[0] | |
def main(): | |
# Load the pre-trained model | |
model = load_model() | |
# Add a title to your app | |
st.title("Weather Prediction App") | |
# Get user input | |
temp_c = st.slider("Temperature in Celsius", min_value=-10.0, max_value=40.0, value=20.0) | |
dew_point_temp_c = st.slider("Dew Point Temperature in Celsius", min_value=-10.0, max_value=30.0, value=15.0) | |
rel_humidity = st.slider("Relative Humidity (%)", min_value=0, max_value=100, value=50) | |
wind_speed_kmh = st.slider("Wind Speed in km/h", min_value=0, max_value=50, value=10) | |
visibility_km = st.slider("Visibility in km", min_value=0.1, max_value=50.0, value=10.0) | |
press_kpa = st.slider("Atmospheric Pressure in kPa", min_value=90.0, max_value=110.0, value=101.0) | |
# Create a DataFrame with user input | |
input_data = pd.DataFrame({ | |
'Temp_C': [temp_c], | |
'Dew Point Temp_C': [dew_point_temp_c], | |
'Rel Hum_%': [rel_humidity], | |
'Wind Speed_km/h': [wind_speed_kmh], | |
'Visibility_km': [visibility_km], | |
'Press_kPa': [press_kpa], | |
}) | |
# Make predictions | |
if st.button("Predict Weather"): | |
predicted_weather = predict_weather_conditions(model, input_data) | |
st.success(f"Predicted Weather Condition: {predicted_weather}") | |
if __name__ == '__main__': | |
main() | |