File size: 5,226 Bytes
b308db4
 
 
860bc61
b308db4
860bc61
b308db4
860bc61
b308db4
 
860bc61
b308db4
 
860bc61
b308db4
860bc61
 
b308db4
 
 
 
860bc61
 
 
 
 
 
 
 
b308db4
 
860bc61
 
 
24a04b5
 
 
b308db4
 
860bc61
 
5617b18
860bc61
5617b18
860bc61
b308db4
 
5617b18
 
b308db4
860bc61
 
 
 
5617b18
860bc61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbff83f
 
 
 
 
 
 
 
 
5617b18
 
 
 
 
b308db4
 
 
 
 
860bc61
 
 
 
 
 
 
 
 
b308db4
 
 
 
 
 
 
 
 
 
 
 
 
 
860bc61
b308db4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
860bc61
b308db4
 
 
 
 
 
860bc61
b308db4
 
 
 
860bc61
 
 
b308db4
860bc61
b308db4
 
 
 
860bc61
b308db4
860bc61
b308db4
 
 
860bc61
 
 
 
 
b308db4
 
860bc61
 
 
 
 
b308db4
 
cbff83f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

@spaces.GPU(duration=190)
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    image = pipe(
        prompt=prompt,
        width=width,
        height=height,
        num_inference_steps=num_inference_steps,
        generator=generator,
        guidance_scale=guidance_scale
    ).images[0]
    return image, seed

examples = [
    "a galaxy swirling with vibrant blue and purple hues",
    "a futuristic cityscape under a dark sky",
    "a serene forest with a magical glowing tree",
    "a futuristic cityscape with sleek skyscrapers and flying cars",
    "a portrait of a smiling woman with a colorful floral crown",
    "a fantastical creature with the body of a dragon and the wings of a butterfly",
]

css = """
body {
    background-color: #f4faff;
    color: #005662;
    font-family: Arial, sans-serif;
}
#col-container {
    margin: 0 auto;
    max-width: 100%;
    padding: 20px;
}
.gr-button {
    background-color: #0288d1;
    color: white;
    border-radius: 8px;
    transition: background-color 0.3s ease;
}
.gr-button:hover {
    background-color: #0277bd;
}
.gr-examples-card {
    background-color: #ffffff;
    border: 1px solid #0288d1;
    border-radius: 12px;
    padding: 16px;
    margin-bottom: 12px;
}
.gr-examples-card:hover {
    background-color: #e0f7fa;
    border-color: #0277bd;
}
.gr-progress-bar, .gr-progress-bar-fill {
    background-color: #0288d1 !important;
}
.gr-slider, .gr-slider-track {
    background-color: #0288d1 !important;
}
.gr-slider-thumb {
    background-color: #005662 !important;
}
.gr-text-input, .gr-image {
    width: 100%;
    box-sizing: border-box;
    margin-bottom: 10px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# FLUX.1 [dev]
12B param rectified flow transformer guidance-distilled from FLUX.1 [pro]
        
<a href="https://huggingface.co/black-forest-labs/FLUX.1-dev" style="text-decoration:none;">
<div class="gr-examples-card">
    <h3>View Model Details</h3>
    <p>Explore more about this model on Hugging Face.</p>
</div>
</a>
        """)
        
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=15,
                    step=0.1,
                    value=3.5,
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )
        
        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt],
            outputs=[result, seed],
            cache_examples="lazy"
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs=[result, seed]
    )

    demo.load(
        fn=lambda: None,
        inputs=None,
        outputs=None,
        _js="""
        function() {
            document.addEventListener('keydown', function(event) {
                if (event.key === 'Enter') {
                    document.querySelector('button').click();
                }
            });
        }
        """
    )

demo.launch()