File size: 4,314 Bytes
b308db4
 
 
860bc61
b308db4
860bc61
 
b308db4
860bc61
b308db4
 
860bc61
b308db4
 
860bc61
b308db4
860bc61
 
b308db4
 
 
 
860bc61
 
 
 
 
 
 
 
b308db4
 
860bc61
 
 
b308db4
 
860bc61
 
 
 
 
b308db4
 
 
 
860bc61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b308db4
 
 
 
 
860bc61
 
 
 
 
 
 
 
 
b308db4
 
 
 
 
 
 
 
 
 
 
 
 
 
860bc61
b308db4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
860bc61
b308db4
 
 
 
 
 
860bc61
b308db4
 
 
 
860bc61
 
 
b308db4
860bc61
b308db4
 
 
 
860bc61
b308db4
860bc61
b308db4
 
 
860bc61
 
 
 
 
b308db4
 
860bc61
 
 
 
 
b308db4
 
860bc61
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

@spaces.GPU(duration=190)
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    image = pipe(
        prompt=prompt,
        width=width,
        height=height,
        num_inference_steps=num_inference_steps,
        generator=generator,
        guidance_scale=guidance_scale
    ).images[0]
    return image, seed

examples = [
    "a galaxy swirling with vibrant blue and purple hues",
    "a futuristic cityscape under a dark sky",
    "a serene forest with a magical glowing tree",
]

css = """
body {
    background-color: #e0f7fa;
    color: #005662;
}
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
.gr-button {
    background-color: #0288d1;
    color: white;
    border-radius: 8px;
}
.gr-button:hover {
    background-color: #0277bd;
}
.gr-examples-card {
    background-color: #ffffff;
    border: 1px solid #0288d1;
    border-radius: 12px;
    padding: 16px;
    margin-bottom: 12px;
}
.gr-examples-card:hover {
    background-color: #e0f7fa;
    border-color: #0277bd;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# FLUX.1 [dev]
12B param rectified flow transformer guidance-distilled from FLUX.1 [pro]
        
<a href="https://huggingface.co/black-forest-labs/FLUX.1-dev" style="text-decoration:none;">
<div class="gr-examples-card">
    <h3>View Model Details</h3>
    <p>Explore more about this model on Hugging Face.</p>
</div>
</a>
        """)
        
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=15,
                    step=0.1,
                    value=3.5,
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )
        
        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt],
            outputs=[result, seed],
            cache_examples="lazy"
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs=[result, seed]
    )

demo.launch()