File size: 6,889 Bytes
b308db4
 
 
860bc61
b308db4
860bc61
77847a2
 
39f57d1
 
 
b308db4
860bc61
b308db4
 
39f57d1
 
f0d5119
39f57d1
 
b308db4
 
860bc61
b308db4
860bc61
 
b308db4
 
 
 
860bc61
 
 
 
 
 
 
 
b308db4
77847a2
 
 
 
 
 
b308db4
860bc61
 
 
24a04b5
 
 
b308db4
 
860bc61
 
5617b18
860bc61
5617b18
860bc61
b308db4
 
5617b18
 
b308db4
860bc61
 
 
 
5617b18
860bc61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbff83f
 
 
 
 
 
 
 
 
5617b18
 
 
 
 
b308db4
 
39f57d1
f0d5119
b308db4
 
860bc61
 
 
 
 
 
 
 
 
b308db4
39f57d1
 
b308db4
 
 
 
 
 
 
 
 
 
 
 
860bc61
b308db4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
860bc61
b308db4
 
 
 
 
 
860bc61
b308db4
 
 
 
860bc61
 
 
b308db4
860bc61
b308db4
 
 
 
860bc61
b308db4
860bc61
b308db4
 
77847a2
 
5e1f3c0
77847a2
 
 
 
 
 
 
 
 
 
 
 
b308db4
860bc61
 
 
 
 
b308db4
 
5e1f3c0
 
 
 
 
 
 
 
 
 
 
 
 
 
77847a2
 
 
 
 
860bc61
 
 
 
 
b308db4
 
cbff83f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39f57d1
cbff83f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
from PIL import Image
import io
import os
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

huggingface_token = os.getenv("HUGGINGFACE_TOKEN")

Title = "Text-2-Image Generation With Transformer Rectifier | Nirajan Dhakal"

pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, token = huggingface_token).to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

@spaces.GPU(duration=190)
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    image = pipe(
        prompt=prompt,
        width=width,
        height=height,
        num_inference_steps=num_inference_steps,
        generator=generator,
        guidance_scale=guidance_scale
    ).images[0]
    return image, seed

def download_image(image, file_format):
    img_byte_arr = io.BytesIO()
    image.save(img_byte_arr, format=file_format)
    img_byte_arr = img_byte_arr.getvalue()
    return img_byte_arr

examples = [
    "a galaxy swirling with vibrant blue and purple hues",
    "a futuristic cityscape under a dark sky",
    "a serene forest with a magical glowing tree",
    "a futuristic cityscape with sleek skyscrapers and flying cars",
    "a portrait of a smiling woman with a colorful floral crown",
    "a fantastical creature with the body of a dragon and the wings of a butterfly",
]

css = """
body {
    background-color: #f4faff;
    color: #005662;
    font-family: Arial, sans-serif;
}
#col-container {
    margin: 0 auto;
    max-width: 100%;
    padding: 20px;
}
.gr-button {
    background-color: #0288d1;
    color: white;
    border-radius: 8px;
    transition: background-color 0.3s ease;
}
.gr-button:hover {
    background-color: #0277bd;
}
.gr-examples-card {
    background-color: #ffffff;
    border: 1px solid #0288d1;
    border-radius: 12px;
    padding: 16px;
    margin-bottom: 12px;
}
.gr-examples-card:hover {
    background-color: #e0f7fa;
    border-color: #0277bd;
}
.gr-progress-bar, .gr-progress-bar-fill {
    background-color: #0288d1 !important;
}
.gr-slider, .gr-slider-track {
    background-color: #0288d1 !important;
}
.gr-slider-thumb {
    background-color: #005662 !important;
}
.gr-text-input, .gr-image {
    width: 100%;
    box-sizing: border-box;
    margin-bottom: 10px;
}
"""

with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="blue", secondary_hue="gray")) as demo:
    gr.HTML(title=Title)
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# FLUX.1 [dev]
12B param rectified flow transformer guidance-distilled from FLUX.1 [pro]
        
<a href="https://huggingface.co/black-forest-labs/FLUX.1-dev" style="text-decoration:none;">
<div class="gr-examples-card">
    <h3>View Model Details</h3>
    <p>Explore more about this model on Hugging Face.</p>
</div>
</a>
        """)

            
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=15,
                    step=0.1,
                    value=3.5,
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )
        
        download_format = gr.Radio(
            label="Download Format",
            choices=["PNG", "JPEG", "SVG", "WEBP"],
            value="PNG",
            type="value",
        )

        download_button = gr.Button("Download Image")

        download_button.click(
            fn=download_image,
            inputs=[result, download_format],
            outputs=gr.File(label="Download"),
        )

        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt],
            outputs=[result, seed],
            cache_examples="lazy"
        )

        share_buttons = gr.Row()
        with share_buttons:
            twitter_button = gr.Button("Share on Twitter")
            facebook_button = gr.Button("Share on Facebook")

        twitter_button.click(
            fn=lambda img: f"https://twitter.com/intent/tweet?url={img}",
            inputs=[result],
            outputs=None,
            _js="(img) => window.open(img, '_blank')"
        )

        facebook_button.click(
            fn=lambda img: f"https://www.facebook.com/sharer/sharer.php?u={img}",
            inputs=[result],
            outputs=None,
            _js="(img) => window.open(img, '_blank')"
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs=[result, seed]
    )

    demo.load(
        fn=lambda: None,
        inputs=None,
        outputs=None,
        _js="""
        function() {
            document.addEventListener('keydown', function(event) {
                if (event.key === 'Enter') {
                    document.querySelector('button').click();
                }
            });
        }
        """
    )


demo.launch()