Flux.1-Dev / app.py
nirajandhakal's picture
Update app.py
5617b18 verified
raw
history blame
5.23 kB
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
@spaces.GPU(duration=190)
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=guidance_scale
).images[0]
return image, seed
examples = [
"a galaxy swirling with vibrant blue and purple hues",
"a futuristic cityscape under a dark sky",
"a serene forest with a magical glowing tree",
"a futuristic cityscape with sleek skyscrapers and flying cars",
"a portrait of a smiling woman with a colorful floral crown",
"a fantastical creature with the body of a dragon and the wings of a butterfly",
]
css = """
body {
background-color: #f4faff;
color: #005662;
font-family: Arial, sans-serif;
}
#col-container {
margin: 0 auto;
max-width: 100%;
padding: 20px;
}
.gr-button {
background-color: #0288d1;
color: white;
border-radius: 8px;
transition: background-color 0.3s ease;
}
.gr-button:hover {
background-color: #0277bd;
}
.gr-examples-card {
background-color: #ffffff;
border: 1px solid #0288d1;
border-radius: 12px;
padding: 16px;
margin-bottom: 12px;
}
.gr-examples-card:hover {
background-color: #e0f7fa;
border-color: #0277bd;
}
.gr-progress-bar, .gr-progress-bar-fill {
background-color: #0288d1 !important;
}
.gr-slider, .gr-slider-track {
background-color: #0288d1 !important;
}
.gr-slider-thumb {
background-color: #005662 !important;
}
.gr-text-input, .gr-image {
width: 100%;
box-sizing: border-box;
margin-bottom: 10px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 [dev]
12B param rectified flow transformer guidance-distilled from FLUX.1 [pro]
<a href="https://huggingface.co/black-forest-labs/FLUX.1-dev" style="text-decoration:none;">
<div class="gr-examples-card">
<h3>View Model Details</h3>
<p>Explore more about this model on Hugging Face.</p>
</div>
</a>
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result, seed]
)
demo.load(
fn=lambda: None,
inputs=None,
outputs=None,
_js="""
function() {
document.addEventListener('keydown', function(event) {
if (event.key === 'Enter') {
document.querySelector('button').click();
}
});
}
"""
)
demo.launch()